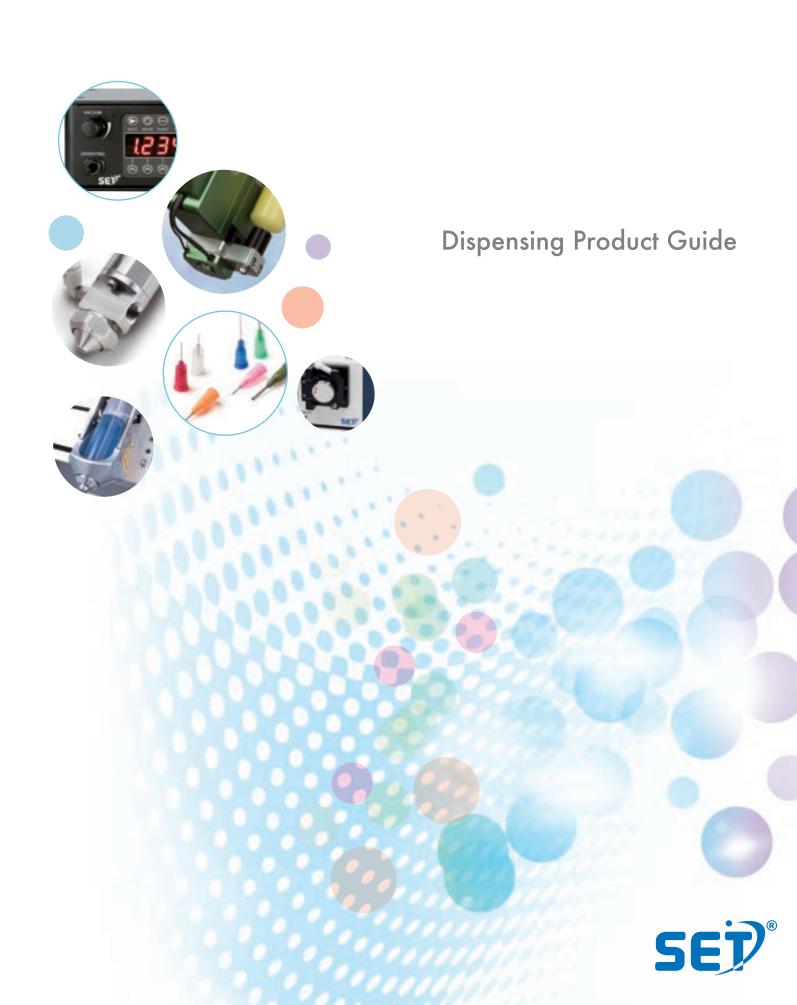


### SAN-EI TECHLTD.

Head office; 7-1-15 Kashiwa, Kashiwa-shi, Chiba 277-0005 Japan Branch offices; Sendai, Nishi-Kanto, Kanagawa, Nagoya, Osaka


SAN-EI TECH LTD. (SHANGHAI)
Room1609-1611, Huijin Building, NO.123, Suzhou Dadao East, Suzhou Industrial Park, Suzhou, China 215000
TEL. +86-512-6515-1866 FAX. +86-512-6515-4348

San-Ei Tech (Thailand) Co., Ltd. 1588/2 Debaratana Rd, Bangnatai, Bang Na, Bangkok 10260 TEL.&FAX. +66-0-2161-0810

SAN-EI TECH(TAIWAN) 13F, No. 80, Sec. 1, Zhongxiao W. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.) TEL. +886-2-2371-6636







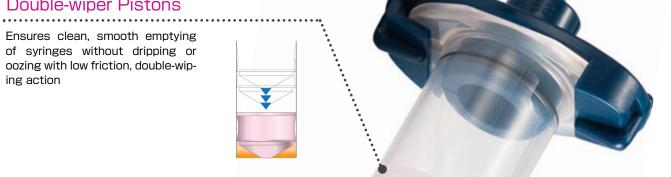
# Solution Evolution Technology

### Contents

| 1 | Dispensing Components                                                                                  | 4  |
|---|--------------------------------------------------------------------------------------------------------|----|
|   | Syringes · Pistons · Syringe Adapters                                                                  |    |
| 2 | Nozzle Components · · · · · · · · · · · · · · · · · · ·                                                | 8  |
|   | Ocheral purpose tips official area tips opecially tips Lab Kit Wetal flozzles                          |    |
| 3 | SDP Series Dispensers · · · · · · · · · · · · · · · · · · ·                                            | 12 |
|   | • SDP520 · SDP420                                                                                      |    |
| 1 | SV Series Valves · · · · · · · · · · · · · · · · · · ·                                                 | 1/ |
| 7 | Diaphragm valves · Needle valves · Piston valves · Spray valves ·                                      | 14 |
|   | Conformal coating valves · High viscosity spray valve · High pressure spool valves  • Valve controller |    |
|   |                                                                                                        |    |
| 5 | -                                                                                                      | 32 |
|   | BEATRUM · BEATRUM-H                                                                                    |    |
| 6 | Syringe filling system                                                                                 | 35 |
|   | Syringe filling equipment    Pressurized syringe filling system                                        |    |
|   | Manual loader     Syringe filling adapter                                                              |    |

When it comes to providing solutions to fluid dispensing challenges, SAN-EI TECH services customers across industrial sectors with unparalleled technical expertise.

SAN-EI TECH continues to offer a diverse product line that delivers both quality and value while responding to market demands for ever-higher precision and performance.


|    | AXELIA                                                         |    |
|----|----------------------------------------------------------------|----|
| 8  | Advanced Dispensing Table-top Robot  • SR Series Robot         | 38 |
| 9  | Cartesian Robot                                                | 40 |
| 10 | Tube-type / Cartridge Material Dispenser                       | 42 |
| 11 | Peltier Syringe Temperature Control Unit                       | 43 |
| 12 | Digital Tubing Dispenser · · · · · · · · · · · · · · · · · · · |    |
| 13 | Pressurized Fluid Tanks · · · · · · · · · · · · · · · · · · ·  |    |
| 14 | Precision Lubrication System                                   | 46 |

### Wide range of components available for specific application needs

SET dispensing components are precision molded quality products that are easy to use and designed for the most accurate dispensing results.

#### **Double-wiper Pistons**

Ensures clean, smooth emptying of syringes without dripping or oozing with low friction, double-wiping action



#### Polypropylene syringes with thick wall precision molded without release agent

Prevents cracking or rupturing, and provides excellent chemical compatibility

#### Inner bottom of syringe

Provides smooth-flow fluid dispensing



Ensures fluid flow inside the hub for accurate dispensing

#### Luer lock thread of both dispense tip and syringe

O° tapered internal bore

Provides complete wiping from top

to bottom and controller dispensing

for low to high viscosity materials

Ensures safe, secure attachment without the dispense tip or cap ever slipping off

Luer lock thread

Burr-free, polished stainless steel tube opening

Provides undisrupted fluid dispensing

#### **Syringes**

Precision fit between the double-wiper piston and the inside wall of the engineered O°taper syringes ensures consistent fluid deposits with little wasted

| Size | Clear ①  | UV-block@ | Black®   | Pcs per box |
|------|----------|-----------|----------|-------------|
| Зсс  | SH09LL-B | SH09LB-B  | SH09UV-B | 50          |
| 5cc  | SH10LL-B | SH10LB-B  | SH10UV-B | 40          |
| 10cc | SH11LL-B | SH11LB-B  | SH11UV-B | 30          |
| 30cc | SH12LL-B | SH12LB-B  | SH12UV-B | 20          |
| 55cc | SH13LL-B | SH13LB-B  |          | 15          |
| 75cc | SH14LL-B | SH14LB-B  | -        | 10*         |

material: polypropylene

- ① Clear syringe for most fluids
- ② 220-500nm UV block for light sensitive fluids
- 3 Opaque black syringe for light curing fluids

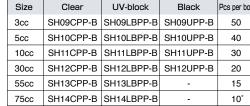


#### **Pistons**

Low-friction PE piston prevents dripping and

| Size      | Pink      | Green     | Yellow     | Pcs per box |
|-----------|-----------|-----------|------------|-------------|
| Зсс       | SH09PEP-B | _         | SH09SPEY-B | 50          |
| 5cc       | SH10PEP-B | SH10PEM-B | SH10SPEY-B | 40          |
| 10cc      | SH11PEP-B | SH11PEM-B | SH11SPEY-B | 30          |
| 30cc/55cc | SH12PEP-B | SH12PEM-B | SH12SPEY-B | 20          |

material: polyethylene




for low-mid viscosity

for high viscosity

#### Syringe / Piston sets

Both syringes and pistons are packed as a set.



Syringes and pistons (pink) are packed as a set.





Option to prevent piston bounce

| Size       | Orange    | Pcs per box |
|------------|-----------|-------------|
| 30/55/75cc | SH12RPE-B | 20          |

material: polyethylene



#### Tip caps

Luer lock thread ensures safe, secure attachment and prevents leaks without slipping off.

| Size       | Part number | Pcs per bo |  |
|------------|-------------|------------|--|
| one size   | SH13G-B     | 50         |  |
| Offic Size | SH13TG-B    | 50         |  |

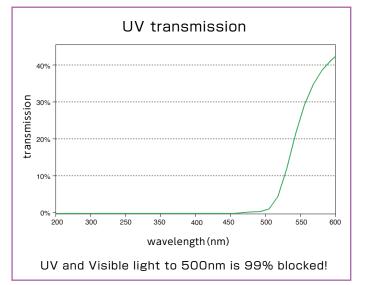
material: polypropylene

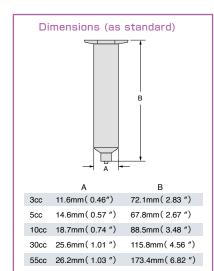


SH13TG-B



Part number Pcs per box


End caps




Unique snap-on design ensures easy, secure attachment.

material: polyethylene







#### Adapter assemblies

One-piece, molded adapter (polyacetal) with O-ring attached. Assembly includes polyurethane tubing, BUNA O-ring and quick connect.

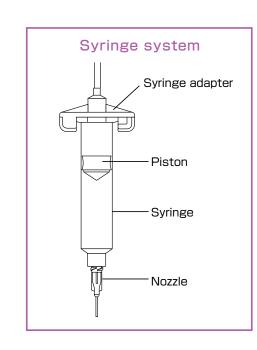
|            |           | Quick connect | Metal typ |             |              |              |          |
|------------|-----------|---------------|-----------|-------------|--------------|--------------|----------|
| Size       | φ4        | mm            | φ6mm      |             | φ4mm φ6mm    |              | sets/box |
|            | 0.9m      | 1.8m          | 0.9m      | 1.8m        | 0.0          | 9m           | ]        |
| Зсс        | 1000BSH48 | 1000BSH48-6   | 1000DSH48 | 1000DSH48-6 | 1000BSH48-ST | 1000DSH48-ST | 1        |
| 5cc        | 1000BSH49 | 1000BSH49-6   | 1000DSH49 | 1000DSH49-6 | 1000BSH49-ST | 1000DSH49-ST | 1        |
| 10cc       | 1000BSH50 | 1000BSH50-6   | 1000DSH50 | 1000DSH50-6 | 1000BSH50-ST | 1000DSH50-ST | 1        |
| 30/55/75cc | 1000BSH52 | 1000BSH52-6   | 1000DSH52 | 1000DSH52-6 | 1000BSH52-ST | 1000DSH52-ST | 1        |

Material: polyacetal (adapter), polyurethane (tubing), BUNA (0-ring) Length of tubing for metal type connector is 0.9M \* Metal type connectors are compatible with most other dispensers



#### Replacement O-rings (for adapters)

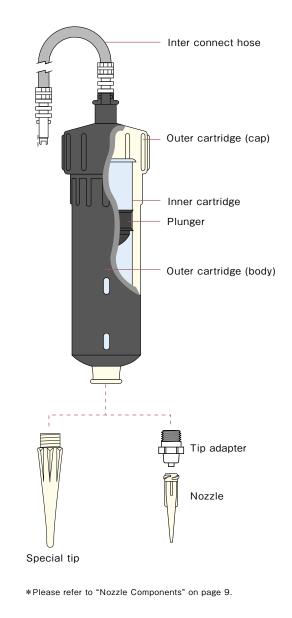
Tight tolerances ensure safe, secure attachment and prevent leaks without slipping off.


| Size       | BUNA<br>nitrile rubber | VITON<br>fluorine-contained rubber | EPR ethylene-propylene rubber | Pcs per box |
|------------|------------------------|------------------------------------|-------------------------------|-------------|
| 3cc        | SH48R-B                | SH48RV-B                           | SH48RE-B                      | 10          |
| 5cc        | SH49R-B                | SH49RV-B                           | SH49RE-B                      | 10          |
| 10cc       | SH50R-B                | SH50RV-B                           | SH50RE-B                      | 10          |
| 30/55/75cc | SH52R-B                | SH52RV-B                           | SH52RE-B                      | 10          |



### Adapter for barrel-to-barrel fitting (common in 3cc, 10cc, 30cc, 55cc, 75cc syringes)

This is convenient for filling a prefilled mid-to-high viscosity material in a syringe into several small barrels.

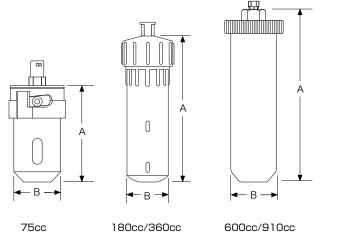

| material      | part number | pieces per pack |
|---------------|-------------|-----------------|
| polypropylene | SF60        | 10              |
|               |             |                 |
|               |             |                 |
|               |             |                 |
|               | 1           |                 |
|               |             |                 |
|               |             |                 |
|               |             |                 |
|               |             |                 |
|               |             |                 |
|               |             |                 |
|               | _           |                 |
| 40.00         | _           |                 |
|               | _           |                 |



#### Cartridge Systems

Disposable plastic cartridges are available in 75cc, 180cc, 360cc, 600cc and 910cc capacities. Outer container is durable up to 0.69MPa.

|               | Type                               | 75cc(2.5oz)   | 180cc(6oz) | 360cc(12oz) | 600cc(20oz) | 910cc(32oz) | pcs |
|---------------|------------------------------------|---------------|------------|-------------|-------------|-------------|-----|
| Inner cartric | lge                                | 5190C         | 5192C      | 5194C       | 3704        | 3705        | 10  |
|               | Standard (black)                   |               | 5196       |             |             | _           | 10  |
| Plunger       | Wiper type (translucent)           |               | 5196WP-LD  |             | 37          | 709         | 10  |
|               | Pressure relief type (translucent) | 5196PRS       |            | -           |             | 10          |     |
| End cap       | End cap                            |               | A605       |             |             | 703         | 10  |
| Tip cap       |                                    | 5192RT        |            |             |             |             | 10  |
| Outer         | Сар                                | SAR65R SAR95R |            | SAR37       | 00CAP       | 1           |     |
| cartridge     | Gasket for cap                     | 560066        | SAI        | R95G        | SC4022      | 22(O-ring)  | 1   |
|               | Body                               | SAR90R        | SAR92R     | SAR94R      | SAR3720R    | SAR3732R    | 1   |
| Inter connec  | Inter connect hose                 |               | ST10       |             |             |             | 1   |
| Tip adapter   | Tip adapter                        |               | SF86       |             |             |             | 1   |

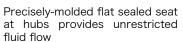


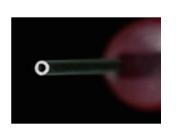



Cartridge reservoir

#### Dimensions for outer cartridge

| Cartridge | Α     | В    |
|-----------|-------|------|
| 75cc      | 95mm  | 46mm |
| 180cc     | 178mm | 49mm |
| 360cc     | 308mm | 49mm |
| 600cc     | 268mm | 71mm |
| 910cc     | 370mm | 71mm |



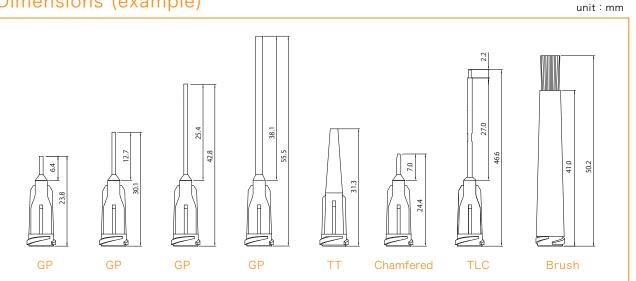


# Precise, consistent dispensing is determined by the type of dispense tip selected

Without burrs or flash, precision dispense tips produce the very best deposit control.

An extensive lineup of dispense tips allows for conformance with various materials, work pieces and applications.








Polished burr-free tips ensure accuracy

#### Color coding for tip sizes (GP needle tips, angled tips)

|   | Color    | Gauge | ID size (mm) | OD size (mm) |
|---|----------|-------|--------------|--------------|
| • | olive    | 14    | 1.55         | 1.83         |
| • | amber    | 15    | 1.37         | 1.65         |
| • | green    | 18    | 0.91         | 1.27         |
| • | pink     | 20    | 0.61         | 0.91         |
| • | purple   | 21    | 0.51         | 0.81         |
| • | blue     | 22    | 0.41         | 0.71         |
|   | orange   | 23    | 0.33         | 0.64         |
|   | red      | 25    | 0.25         | 0.51         |
|   | clear    | 27    | 0.21         | 0.41         |
|   | lavender | 30    | 0.16         | 0.31         |
|   | yellow   | 32    | 0.11         | 0.23         |

#### Dimensions (example)



#### GP needle tips

A wide variety of needle lengths and diameters can be selected for general application.
Burr-free, polished tips provide consistent fluid flow.

|       |                  | Needle           | length         |                  |           |             |
|-------|------------------|------------------|----------------|------------------|-----------|-------------|
| Gauge | 6.4mm<br>(0.25") | 12.7mm<br>(0.5") | 25.4mm<br>(1") | 38.1mm<br>(1.5″) | Hub color | Pcs per box |
| 14    | SH14-0.25-B      | SH14-B           | SH14-1-B       | SH14-1.5-B       | olive     | 50          |
| 15    | SH15-0.25-B      | SH15-B           | SH15-1-B       | SH15-1.5-B       | amber     | 50          |
| 18    | SH18-0.25-B      | SH18-B           | SH18-1-B       | SH18-1.5-B       | green     | 50          |
| 20    | SH20-0.25-B      | SH20-B           | SH20-1-B       | SH20-1.5-B       | pink      | 50          |
| 21    | SH21-0.25-B      | SH21-B           | SH21-1-B       | SH21-1.5-B       | purple    | 50          |
| 22    | SH22-0.25-B      | SH22-B           | SH22-1-B       | SH22-1.5-B       | blue      | 50          |
| 23    | SH23-0.25-B      | SH23-B           | SH23-1-B       | SH23-1.5-B       | orange    | 50          |
| 25    | SH25-0.25-B      | SH25-B           | SH25-1-B       | SH25-1.5-B       | red       | 50          |
| 27    | SH27-0.25-B      | SH27-B           | _              | _                | clear     | 50          |
| 30    | SH30-0.25-B      | SH30-B           | _              | _                | lavender  | 50          |
| 32    | SH32-0.25-B      | _                | _              | _                | yellow    | 25          |

hub: polypropylene shaft: 304 stainless steel

#### Angled tips

Angle shaft allows for reaching under or inside work. Available with 45° and 90° bends and 10 different tip diameters ranging from 14 to 30 gauge.

|       | Needle               | length               |           |  |             |  |
|-------|----------------------|----------------------|-----------|--|-------------|--|
| Gauge | 12.7mm/45°<br>(0.5″) | 12.7mm/90°<br>(0.5″) | Hub color |  | Pcs per box |  |
| 14    | SH14-B-45            | SH14-B-90            | olive     |  | 50          |  |
| 15    | SH15-B-45            | SH15-B-90            | amber     |  | 50          |  |
| 18    | SH18-B-45            | SH18-B-90            | green     |  | 50          |  |
| 20    | SH20-B-45            | SH20-B-90            | pink      |  | 50          |  |
| 21    | SH21-B-45            | SH21-B-90            | purple    |  | 50          |  |
| 22    | SH22-B-45            | SH22-B-90            | blue      |  | 50          |  |
| 23    | SH23-B-45            | SH23-B-90            | orange    |  | 50          |  |
| 25    | SH25-B-45            | SH25-B-90            | red       |  | 50          |  |
| 27    | SH27-B-45            | SH27-B-90            | clear     |  | 50          |  |
| 30    | SH30-B-45            | SH30-B-90            | lavender  |  | 50          |  |

hub: polypropylene shaft: 304 stainless ste

#### Chamfered tips

| Tip   |                      |                 |               | Needle length    |                  |                  |           |             |
|-------|----------------------|-----------------|---------------|------------------|------------------|------------------|-----------|-------------|
| Gauge | Sauge ID size mm(in) |                 |               | 7.0mm<br>(0.28") | 9.5mm<br>(0.37") | 12.7mm<br>(0.5″) | Hub color | Pcs per box |
| 23    | 0.34<br>(.013")      | 0.64<br>(.025") | _             | _                | _                | SH23CH-B         | orange    | 50          |
| 25    | 0.26<br>(.010")      | 0.51<br>(.020") | _             | _                | _                | SH25CH-B         | red       | 50          |
| 27    | 0.21<br>(.008")      | 0.41<br>(.016") | SH27CH-0.25-B | _                | _                | _                | clear     | 25          |
| 30    | 0.17<br>(.007")      | 0.51<br>(.020") | _             | _                | SH30CH-B         | _                | red 🛑     | 25          |
| 33    | 0.11                 | 0.41            | _             | SH33CH-B         | _                | _                | clear     | 25          |

hub: polypropylene shaft: 304 stainless steel \* Values on ID, OD are for tip orifice.

#### TT tapered tips

TT tapered tip provides smooth flow minimizing air entrapment. Gel-type cyanoacrylate adhesives can also be applied.



| Cours | ID size         | OD size         | Material |              | Color   | Pcs per box |  |
|-------|-----------------|-----------------|----------|--------------|---------|-------------|--|
| Gauge | mm(in)          | mm(in)          | standard | opaque rigid | Color   | PCS per box |  |
| 14    | 1.60<br>(.062") | 2.03<br>(.079") | SH14TT-B | SH14RTT-B    | olive   | 50          |  |
| 16    | 1.19<br>(.047") | 1.63<br>(.064") | SH16TT-B | SH16RTT-B    | gray 💮  | 50          |  |
| 18    | 0.84<br>(.033") | 1.25<br>(.049") | SH18TT-B | SH18RTT-B    | green 🛑 | 50          |  |
| 20    | 0.59<br>(.023") | 1.02<br>(.040") | SH20TT-B | SH20RTT-B    | pink    | 50          |  |
| 22    | 0.41<br>(.016") | 0.81<br>(.016") | SH22TT-B | SH22RTT-B    | blue    | 50          |  |
| 25    | 0.25<br>(.010") | 0.79<br>(.031") | SH25TT-B | SH25RTT-B    | red 🛑   | 50          |  |
| 27    | 0.20            | 0.41            | _        | SH27RTT-B    | white ( | 50          |  |

standard: polyethylene opaque rigid: polypropylene

#### PP flexible tips

Polypropylene shaft reaches into hard-to-access areas and will not scratch delicate surfaces.



|       | ID cizo         | OD size         | Needle           |                  |           |  |             |
|-------|-----------------|-----------------|------------------|------------------|-----------|--|-------------|
| Gauge | mm(in)          | mm(in)          | 12.7mm<br>(0.5") | 38.1mm<br>(1.5″) | Hub color |  | Pcs per box |
| 15    | 1.35<br>(.053") | 1.65<br>(.065") | SH15PPS-B        | SH15PP-B         | amber     |  | 50          |
| 18    | 0.80<br>(.032") | 1.21<br>(.048") | SH18PPS-B        | SH18PP-B         | green     |  | 50          |
| 20    | 0.47<br>(.019") | 0.85<br>(.033") | SH20PPS-B        | SH20PP-B         | pink      |  | 50          |
| 25    | 0.40<br>(.016") | 0.80<br>(.032") | SH25PPS-B        | SH25PP-B         | red       |  | 50          |

hub: polypropylene shaft: polypropylene



Flexible shaft will not scratc delicate surfaces.



#### TLC PTFE-lined tips

PTFE inner lining inside shaft resists clogging of cyanocrylates.

| 0     | Tip teflon<br>OD size | Tip teflon<br>ID size | Needle<br>OD size | Needle     | length    | Under a desc | Pcs per box |  |
|-------|-----------------------|-----------------------|-------------------|------------|-----------|--------------|-------------|--|
| Gauge | mm(in)                | mm(in)                | mm(in)            | 16.5mm     | 29.2mm    | Hub color    |             |  |
| 21    | 1.18<br>(.046")       | 0.68<br>(.027")       | 1.65<br>(.065")   | SH21TLCS-B | SH21TLC-B | gray 💮       | 50          |  |
| 25    | 0.76<br>(.030")       | 0.30<br>(.012")       | 1.27<br>(.050")   | SH25TLCS-B | SH25TLC-B | pink         | 50          |  |



hub: Polypropylene shaft: 304 stainless steel inner lining: PTFE (low surface energy)

#### Oval tips

Oval stainless steel tips apply thick material in about 2mm width flat ribbon deposits.

| 0                             | Needle length | Color |  | Dan man haw |  |  |  |
|-------------------------------|---------------|-------|--|-------------|--|--|--|
| Gauge                         | 12.7mm        |       |  | Pcs per box |  |  |  |
| 15                            | SH15OVAL-B    | amber |  | 50          |  |  |  |
| Outlet size (ID): 1.98×0.41mm |               |       |  |             |  |  |  |
| hub: Polypropylene            |               |       |  |             |  |  |  |

shaft: 304 stainless steel

#### Tip shields for light-sensitive and **UV-cure** materials

| yringe size | Part number | Color |  | Pcs per box | 1  |
|-------------|-------------|-------|--|-------------|----|
| Зсс         | SH03        | red   |  | 10          | Ĺ  |
| 5~55cc      | SH06        | black |  | 10          |    |
|             |             |       |  |             |    |
|             |             |       |  |             | (1 |

#### Brush tips

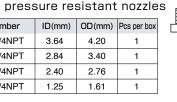
Nylon bristles will not damage work surfaces and are best for spreading glues and greases. Available in soft or stiff bristles.

| Style | Standard | High flow |
|-------|----------|-----------|
| soft  | SH40A    | SH40HF    |
| stiff | SH41A    | SH41HF    |

bristle: nylon

#### High flow nozzles

High flow nozzles can be used with SV35 or SV45 valves to achieve higher flow or higher transfer efficiency. mounting: 1/4 NPT


#### Special nozzles

| Part number | Length $\times$ outlet (mm) | Pcs per pack |
|-------------|-----------------------------|--------------|
| SN80        | 63.5×φ3.2                   | 10           |
| SN81        | 63.5×φ1.6                   | 10           |
| SN82        | 101.6×φ1.6                  | 10           |
| SN83        | 101.6×ф0.8                  | 10           |



High pressure resistant nozzles

| Part number  | ID(mm) | OD(mm) | Pcs per box |
|--------------|--------|--------|-------------|
| SH008-1/4NPT | 3.64   | 4.20   | 1           |
| SH010-1/4NPT | 2.84   | 3.40   | 1           |
| SH012-1/4NPT | 2.40   | 2.76   | 1           |
| SH016-1/4NPT | 1.25   | 1.61   | 1           |



#### Lab Kit SH100-SK



\*Please indicate the part number as "SH100" if you would like to purchase only the Nozzle Kit.

Lab Kit SH100-SK offers an assortment of dispensing components specifically for new users of dispensers or those who require the best dispenser according to a particular application.

The Nozzle Kit includes nozzle sizes ranging from 14G for general purpose to 30G for minute dispensing amounts.

- · Nozzle Kit ··· 1 set
- · 3cc/5cc/10cc/30cc/55cc syringe (clear · UV block) ···4 for each
- · 3cc/5cc/10cc piston ···8 for each
- · 30cc&55cc piston··· 16 for each
- · 3cc/5cc/10cc/30cc&55cc syringe adapter…1 for each

#### Metal needle tips

13mm tip is the standard length with other customized lengths available

| Part number | ID size<br>mm(in) | OD size<br>mm(in) | Pcs per box |
|-------------|-------------------|-------------------|-------------|
| SSN-20      | 0.65<br>(.026")   | 0.89<br>(.035")   | 12          |
| SSN-21      | 0.53<br>(.021")   | 0.81<br>(.032")   | 12          |
| SSN-22      | 0.47<br>(.019")   | 0.71<br>(.028")   | 12          |
| SSN-23      | 0.38<br>(.015")   | 0.64<br>(.025")   | 12          |
| SSN-24      | 0.34<br>(.013")   | 0.56<br>(.022")   | 12          |
| SSN-25      | 0.33<br>(.013")   | 0.51<br>(.020")   | 12          |
| SSN-26      | 0.25<br>(.010")   | 0.45<br>(.018")   | 12          |
| SSN-27      | 0.21<br>(.008")   | 0.41<br>(.016")   | 12          |
| SSN-28      | 0.18<br>(.007")   | 0.38<br>(.015")   | 12          |
|             |                   |                   |             |

shaft neck: Ni plate, shaft: 304 stainless steel

#### Metal nozzles (one per unit)

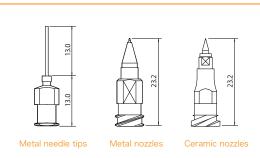
High precision nozzle machined as a single component provides smooth fluid flow

| Part number | ID size<br>mm(in) | OD size<br>mm(in) |
|-------------|-------------------|-------------------|
| SPN-40      | 0.40<br>(.016")   | 0.50<br>(.020")   |
| SPN-35      | 0.35<br>(.014")   | 0.45<br>(.018")   |
| SPN-30      | 0.30<br>(.012")   | 0.40<br>(.016")   |
| SPN-25      | 0.25<br>(.010")   | 0.35<br>(.014")   |
| SPN-20      | 0.20<br>(.008")   | 0.30<br>(.012")   |
| SPN-15      | 0.15<br>(.006")   | 0.25<br>(.010")   |
| SPN-10      | 0.10<br>(.004")   | 0.20<br>(.008")   |

material: 303 stainless steel shaft neck: double-thread screw minimum inner diameter must be 10mm.

#### Multiple nozzle manifold tips

Best for applications of medium to high viscosity fluids. Different numbers of nozzles and lengths are available. Multiple chamfered nozzles with tapered tips are also available.





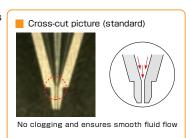



#### Dimension(sample)

unit: mm



#### Super-Fine ceramic nozzles (one per unit)


Nozzle sizes can be manufactured in increments of  $5\mu\text{m}$  from a nozzle inner diameter of 0.005mm

material: 303 stainless steel shaft: ceramic (zirconia) shaft neck: double-threaded screw



#### Smooth inner surface of the nozzle prevents clogging and ensures consistent fluid flow

- · Double-threaded-screw type nozzle allows for secure attachment to a syringe ensuring excellent air tightness.
- · Chamfered-type tip reduces residue of a thick paste, which is ideal for minute dispensing amounts.



#### Flat nozzle

Used for thin-flim coating on a wider surface.



### SET Dispensers for superior quality and best yields

#### in precision assembly processes

SDP Series Dispensers are designed to optimize the dispensing of adhesives, lubricants and other assembly fluids by increasing throughput, improving yields and reducing production costs.



### **SDP520**



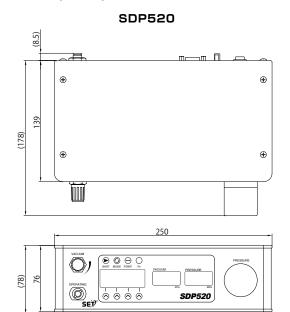
### Most versatile, all-digital display for optimal process control

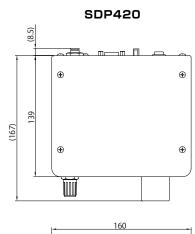
SDP520 dispensing controller is ideal for a wide variety of applications that involve manual operation or automated processes. All-digital display provides easy programming for the processes that require a high degree of process control.

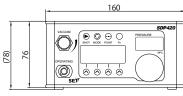
### **SDP420**



### Programmable dispensing ensuring a high degree of process control


SDP420 dispensing controller is designed to control many applications of various assembly fluids to improve yields and reduce production costs. SDP400 features vacuum function, TEACH function and internal air pressure reservoir to enhance consistency in dispensing.


#### **Specifications**


|                   |                                | SDP520                       |                                | SDP420                                                |  |
|-------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------------------------------|--|
| Power             | ver VDC24 (VAC100-240 adapter) |                              | -240 adapter)                  |                                                       |  |
| Power Con         | sumption                       |                              | 18W                            |                                                       |  |
| Air Input Re      | equirement                     | 0.7MPa Maximun               | Note: Clean, dry filtered fact | cory air or five micron filter regulator is required. |  |
| Pressure se       | etting range                   | 0~0.                         | 60MPa                          | 0∼0.50MPa                                             |  |
| Time settin       | g range                        |                              | 0.005~                         | 999.9sec                                              |  |
| Start input       |                                |                              | Footpedal, Band switch,        | signal for VDC5-24 (I/O)                              |  |
| I/O               |                                | D-sub 9 pin connector        |                                | connector                                             |  |
| Storage condition |                                | 5°C-40°C (nor                | n-condensing)                  |                                                       |  |
| External dir      | mensions<br>protruding portion | W250×D139                    | 187)×H76(78)                   | W160×D139(176)×H76(78)                                |  |
| Weight            |                                | 1.6 k g                      |                                | 1.0 k g                                               |  |
| Accessories       |                                | AC adapter Foot pedal switch |                                |                                                       |  |
|                   |                                |                              | featu                          | res                                                   |  |
| Regulator t       | уре                            |                              | pre                            | cise                                                  |  |
| Vacuum fur        | nction                         |                              | y                              | es                                                    |  |
| Display           | dispense timing digital        |                              | ital                           |                                                       |  |
| air pressure      |                                | digital                      |                                |                                                       |  |
|                   | vacuum pressure                | dig                          | gital                          | analog                                                |  |
| Teaching fu       | unction                        |                              | y                              | es                                                    |  |
| Internal air      | pressure circuit               |                              | 0                              | _                                                     |  |
|                   |                                |                              |                                |                                                       |  |

unit:mm

#### Dimensions (unit:mm)







The best valve can be selected according to the characteristics of the use materials and the requirements for applications ensuring high quality dispensing.

Diaphragm valves Accurate and speedy shut-off movement provides no drips

P18,19



- · Compact size and lightweight construction allows for easy installation
- · UHMW polymer wetted chamber and diaphragm valve is best for reactivematerials



- · Ideal for applying anaerobic UV
- · Wetted parts made of resin enable to be used for reactive materials



- · Extremely small design (length: 63.2mm weight:85g)
- · Easy installation for small spaces

#### Needle valves

Best for consistent small amount applications with various adhesives, solvents or other mid-to-high viscous fluids

P20, 21



- Unique packing structure enhances durability
- · Drip-free design ensures millions of cycles



### SV59MD

- Consistent microdots with a variety of assembly fluids
- · Unique sealing structure enhances durability

#### Valve controller SVC720V

Consistent, precise volume control for high precision dispensing valves



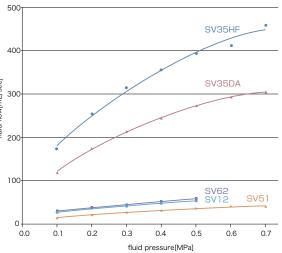
#### SVC720V

#### Piston valves

Reliable shut-off feature clearly cuts off deposits ofmid-to-high viscous fluids like sealants

P22, 23

#### SV35DA


- · Fluid volume is adjustable using finely graduated micrometer control
- clean cuts off of fluids



#### SV35HF

- · Allows for achieving a higher fluid flow than SV35HF
- · Especially suited for filling applications

#### Valve Fluid Flow Reference



■ Condition: without nozzle, valve activating pressure: 0.5MPa Material used: water

#### Spray valves

Best for spraying of thin coatings or markings with low viscosity fluids

#### P24, 25, 26, 27

#### SV91

- Low volume, low pressure spray coatings enable high transfer efficiency
- No overspray, no misting



#### SV59MS

- · Low pressure, very fine volume spraying coatings
- · No overspray, no misting

### <High viscosity spray valve>

#### SVOIS

- Used for spraying higher viscosity
- · Controlled spraying without splat-



#### Spray valve controller

Low volume low pressure air allows high transfer efficiency without mist or overspray.



#### SV01CS

- · Used for spraying higher viscosity materials
- · Controlled spraying without mask ing to prevent splattering

#### Conformal coating valves

Fast, precise conformal coating for moisture-proof material

P28, 29



#### SV91CD

Non-contact dot, spraying or line dispensing, three different patterns of conformal coatings can be selected depending on the application



- Best for application of thin film coating of moisture-proof material in clearly defined patterns
- · Square-cut carbide nozzle reduces clogging and increases reliability
- · Large area coverage with low flow rates

#### Valve Controller specified for SV91CD

Non-contact dot, spray, line dispensing can be programmed with I/O signals.





Along with excellent high-speed response. precise thin-film patterns of conformal coating can be

specified for SV70

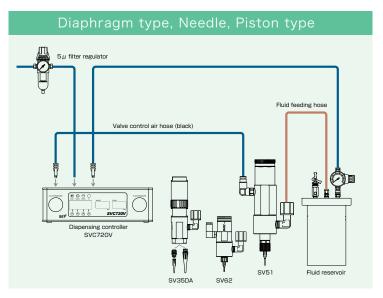
Valve Controller

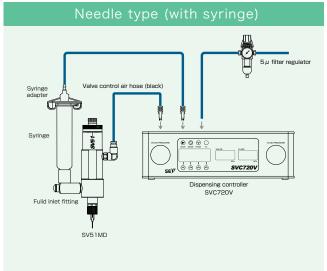


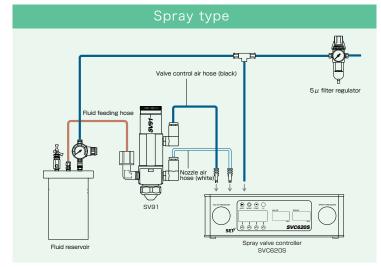


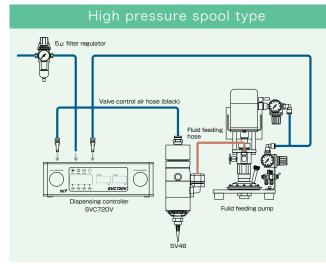
#### High pressure spool valve

Allows for high speed transferring of high viscosity sealants, greases and other high viscosity materials P30


#### **SV46**


- · Designed to withstand high pressure dispensing of fluids (up to 17.2MPa)
- · High pressure transferring pump can be connected





#### Valve specifications

| Application        | For low viscosity fluids |                      | For low-to-mid viscosity fluids |                                          | For mid-to-high viscosity fluids      |                                |                                |
|--------------------|--------------------------|----------------------|---------------------------------|------------------------------------------|---------------------------------------|--------------------------------|--------------------------------|
|                    | SV62                     | SV62-B               | SV12                            | SV51                                     | SV59MD                                | SV35DA                         | SV35HF                         |
| Model              | 2006                     | 2005                 | 8772                            | 1906                                     | 6946 0                                | \$2016                         | SS/35                          |
| Valve type         |                          | Diaphragm type       |                                 | Needle                                   | e type                                | Piston v                       | alve type                      |
| Weight<br>and size | 154g<br>φ26.9×79.0mm     | 154g<br>¢26.9×79.0mm | 85g<br>\$\phi\$18.9×63.2mm      | 312g<br>¢26.9×113.0mm                    | 244g<br>¢27mm×79mm                    | 379g<br>φ28.5×141.0mm          | 333g<br>¢31.1×100.0mm          |
| Wetted<br>parts    | UHMW                     | UHMW                 | UHMW<br>303 stainless<br>steel  | Teflon or UHMW<br>303 stainless<br>steel | PTFE,FKM,PP<br>303 stainless<br>steel | UHMW<br>303 stainless<br>steel | UHMW<br>303 stainless<br>steel |









| For spray coating                        |                                       |                     | Fo                  | For conformal coating                    |                                          |                                         |
|------------------------------------------|---------------------------------------|---------------------|---------------------|------------------------------------------|------------------------------------------|-----------------------------------------|
| SV91                                     | SV59MS                                | SV01S               | SV01CS              | SV91CD                                   | SV70                                     | <i>SV46</i>                             |
| 1000                                     | 63050                                 | **Z=70              |                     |                                          |                                          | S446                                    |
| Needle typ                               | oe air atomizing spray                | nozzle              |                     | Needle type                              |                                          | High pressure<br>balanced-spool<br>type |
| 294g<br>¢26.9×105mm                      | 280g<br>¢27mm×91mm                    | 312g<br>¢26.9×105mm | 312g<br>¢26.9×143mm | 312g<br>¢26.9×136.3mm                    | 334g<br>¢26.9×141mm                      | 728g<br>¢38.1X 119.4mm                  |
| Teflon or UHMW<br>303 stainless<br>steel | PTFE,FKM,PP<br>303 stainless<br>steel | SUS303<br>Teflon    | SUS303<br>Teflon    | Teflon or UHMW<br>303 stainless<br>steel | Teflon or UHMW<br>303 stainless<br>steel | UHMW<br>303 stainless<br>steel          |

#### Valve applications

| Fluids                          | Microdots | Dots         | Potting/<br>Encapsulating | Lines/Stripes | Filling/<br>Packaging | Micro Spray | Spray  |
|---------------------------------|-----------|--------------|---------------------------|---------------|-----------------------|-------------|--------|
| Moisture-proof coating material | SV59MD    | SV51         | -                         | SV70,SV51     | -                     | SV59MS      | SV01CS |
| Anaerobic adhesive              | SV22      | SV62,SV22    | _                         | SV62,SV22     | _                     | _           | _      |
| Brazing paste                   | _         | SV35DA       | -                         | SV35DA        | SV35HF                | _           | SV01S  |
| Cyanoacrylate                   | SV22      | SV62,SV22    | _                         | SV62,SV22     | _                     | _           | _      |
| Electrolytes                    | SV51      | SV62,SV22    | _                         | _             | SV62                  | SV59MS      | SV91   |
| Epoxy adhesive                  | SV59MD    | SV51         | SV35DA                    | SV35DA        | SV35HF                | _           | SV01S  |
| Fluxes                          | SV59MD    | SV51         | _                         | SV51          | -                     | SV59MS      | SV91   |
| Greases                         | SV51      | SV35DA       | _                         | SV35DA        | SV35HF                | _           | SV01S  |
| High viscosity greases          | _         | SV46         | _                         | SV46          | SV46                  | _           | _      |
| Oils                            | SV59MD    | SV51         | _                         | SV51          | SV35HF                | SV59MS      | SV91   |
| Inks                            | SV59MD    | SV51         | _                         | SV51          | -                     | SV59MS      | SV91   |
| Reagents                        | SV59MD    | SV51         | _                         | _             | _                     | SV59MS      | SV91   |
| RTV/sealants                    | SV51      | SV35DA       | SV35DA                    | SV35DA        | SV35HF                | _           | SV01S  |
| Resists                         | _         | SV35DA       | _                         | SV35DA        | SV35HF                | _           | SV01S  |
| Solvents                        | SV59MD    | SV51         | _                         | SV51          | SV35HF                | SV59MS      | SV91   |
| Solder pastes                   | _         | SV35DA       | _                         | SV35DA        | _                     | _           | _      |
| UV curable adhesive             | SV59MD    | SV51         | SV62-B                    | SV62-B        | SV35HF                | SV59MS      | SV01S  |
| UV curable adhesive (anaerobic) | SV22      | SV62-B, SV22 | SV62-B                    | SV62-B、SV22   | SV62-B                | _           | _      |
| Emulsion adhesive               | -         | SV35DA       | _                         | SV35DA        | SV35HF                | _           | SV01S  |

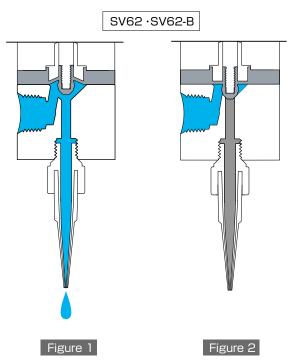
<sup>\*</sup>This chart is only for reference. Compatibility with the actual fluid to be used requires individual testing.

### SV62

#### Precision compact diaphragm for accurate flow control

SV62 precision diaphragm valve is designed to dispense controlled amounts of low to medium viscosity fluids such as solvents, cyanoacrylates, anaerobics and fluxes without chemical reaction by isolating fluid from internal parts.

#### Specifications


| Size                                    | φ26.9mm (Fluid body) x 79.0mm length |
|-----------------------------------------|--------------------------------------|
| Weight                                  | 154g                                 |
| Air cylinder body                       | SUS303                               |
| Diaphragm                               | UHMW*                                |
| Valve head                              | UHMW*                                |
| Tip adapter                             | Polypropylene                        |
| Fluid outlet port                       | 1/8NPT female                        |
| Mounting hole                           | M5 female                            |
| Valve operating air pressure            | 0.4~0.62MPa                          |
| Maximum fluid pressure                  | 0.48MPa                              |
| *************************************** | •                                    |

\*Ultra High Molecular Weight



#### How the Valve Operates

Input air pressure retracts the diaphragm seal, permitting fluid to flow. (Figure 1) Once the cycle is completed, the spring retracts the piston and the diaphragm closes to shut off the fluid. (Figure 2)



### SV62-B

SV62-B precision diaphragm valve, using black UHMW\* resin, which features superior chemical resistance and fluid-shielding property, enables to dispense low-viscosity fluids such as UV adhesives and UV anaerobic adhesives consistently without dripping.

#### **Specifications**

| Size                         | $\phi$ 26.9mm (Fluid body) x 79.0mm length |
|------------------------------|--------------------------------------------|
| Weight                       | 154g                                       |
| Air cylinder body            | SUS303                                     |
| Diaphragm                    | UHMW*                                      |
| Valve head                   | UHMW*                                      |
| Tip adapter                  | Polypropylene                              |
| Fluid outlet port            | 1/8NPT female                              |
| Mounting hole                | M5 female                                  |
| Valve operating air pressure | 0.4~0.62MPa                                |
| Maximum fluid pressure       | 0.48MPa                                    |

<sup>\*</sup>Ultra High Molecular Weight



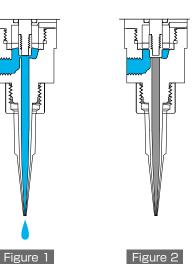


### **SV12**

# Mini-diaphragm valve for controlled, consistent coatings where space is limited

SV12 mini-diaphragm, about 60% smaller than SV62 in size, also provides drip-free and consistent coating.

#### How the Valve Operates


Input air pressure retracts the diaphragm seal, permitting fluid to flow. (Figure 1)  $\,$ 

Once the cycle is completed, the spring retracts the piston and the diaphragm closes to shut off the fluid. (Figure 2)  $\,$ 

#### **Specifications**

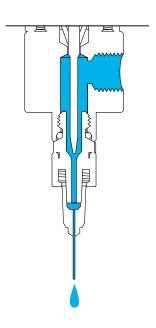
| •                            |                                            |
|------------------------------|--------------------------------------------|
| Size                         | $\phi$ 18.9mm (Fluid body) x 63.2mm length |
| Weight                       | 85g                                        |
| Air cylinder body            | SUS303                                     |
| Diaphragm                    | UHMW*                                      |
| Valve head                   | SUS303                                     |
| Fluid outlet port            | M5×0.8 female                              |
| Mounting hole                | M4 female                                  |
| Valve operating air pressure | 0.4~0.62MPa                                |
| Maximum fluid pressure       | 0.48MPa                                    |

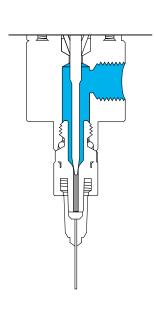
\*Ultra High Molecular Weight



### **SV51**

#### Faster response speed enables clear cut-off of the fluid


SV51 precision needle valve is designed to apply a small amount of low-viscosity fluids with accuracy and the unique packing structure of the valve contributes to superior durability.


#### **Specifications**

| Size                         | $\phi$ 26.9mm (Fluid body) x 113mm length |
|------------------------------|-------------------------------------------|
| Weight                       | 312g (except fluid inlet fitting part)    |
| Air cylinder body            | SUS303                                    |
| Piston needle                | SUS303                                    |
| Needle packing               | SUS303, Teflon                            |
| Fluid body                   | SUS303                                    |
| Tip adapter                  | SUS303                                    |
| Fluid outlet port            | 1/8NPT female                             |
| Mounting hole                | M6 female                                 |
| Valve operating air pressure | 0.4~0.62MPa                               |
| Maximum fluid pressure       | 2.0MPa                                    |

#### How the Valve Operates

Input air pressure retracts the piston needle from the needle seat, permitting fluid to flow. (Figure 1) Once the cycle is completed, the piston spring returns the piston needle back to its position in the dispensing tip to shut off the fluid. (Figure 2).



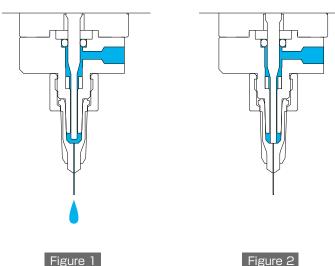




### SV59MD

#### Consistent minimum volume dispensing for microdot application

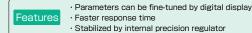
SV59MD microdot dispense valve, with excellent high-speed driven, can apply small to extremely minute dots combined with an optional high-speed solenoid valve, which ensures precise and drip-free operation.


#### **Specifications**

| Size                             | H79mm× <b>¢</b> 27mm                                                |
|----------------------------------|---------------------------------------------------------------------|
| Weight                           | 213g (except fluid inlet fitting part)                              |
| Air cylinder                     | SUS303                                                              |
| Needle                           | SUS303                                                              |
| Needle packing                   | PTFE, FKM                                                           |
| Fluid chamber                    | SUS303, PTFE                                                        |
| Syringe fitting                  | SUS303, FKM、PP                                                      |
| Fluid inlet thread               | M5                                                                  |
| Valve operating air inlet thread | M6                                                                  |
| Valve operating air pressure     | 0.4 ~ 0.62Mpa                                                       |
| Maximum fluid pressure           | 0.7Mpa                                                              |
| Dispensing tip                   | GP Needle tip 23G (ID: $\phi$ 0.33mm) $\sim$ 33G(ID: $\phi$ 0.11mm) |

#### How the Valve Operates

Input air pressure retracts the piston needle from the hub of the dispensing tip, permitting fluid to flow. (Figure 1)


Once the cycle is completed, the piston spring returns the piston needle back to its position in the dispensing tip to shut off the fluid. (Figure 2).





#### Valve controller SVC720V

Consistent, precise volume control for high precision dispensing valves





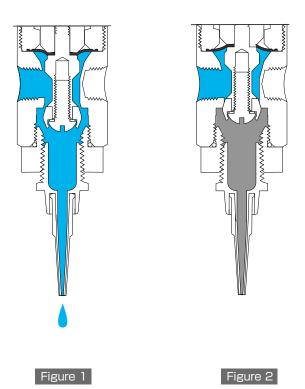


### SV35DA

### Reliable shut off enhances accuracy and consistency for medium to thick fluids

SV35DA precision piston valve is designed to apply uniform dots and stripes of medium to thick fluids such as grease and silicone and a suck-back function prevents dripping. SV35DA features a unique UHMW polymer diaphragm sealing head that ensures longer, trouble-free operation.

#### Specifications


|                              | T                                           |
|------------------------------|---------------------------------------------|
| Size                         | $\phi$ 28.5mm (Fluid body) × 141.0mm length |
| Weight                       | 379g                                        |
| Air cylinder body            | SUS303                                      |
| Diaphragm                    | UHMW*                                       |
| Sealing head                 | SUS303, UHMW                                |
| Fluid body                   | SUS303                                      |
| Tip adapter                  | Polypropylene                               |
| Output thread                | 1/8 NPT female                              |
| Fluid outlet port            | 1/4 NPT female                              |
| Mounting hole                | M8 female                                   |
| Valve operating air pressure | 0.4~0.62MPa                                 |
| Maximum fluid pressure       | 0.7MPa                                      |

<sup>\*</sup>Ultra High Molecular Weight

#### How the Valve Operates

Input air pressure forces the sealing head to move down, permitting fluid to flow. (Figure 1)

Once the cycle is completed, the spring retracts the piston and the sealing head closes to shut off the fluid and pull back a slight amount of fluid to clearly cut it off. (Figure 2).



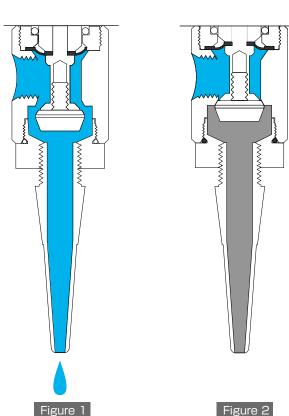


### SV35HF

# Fast and accurate filling process for low to high viscosity fluids

SV35HF piston valve is designed to consistently dispense middle to high viscosity materials SV35DA by achieving a higher and smoother flow rate rather than SV35DA, featuring a fast, clean cut-off that prevents dripping and drooling and excels in precision filling applications.

#### **Specifications**


| Size                         | $\phi$ 31.1mm (Fluid body) × 100.0mm length |
|------------------------------|---------------------------------------------|
| Weight                       | 333g                                        |
| Air cylinder body            | SUS303                                      |
| Diaphragm                    | UHMW*                                       |
| Sealing head                 | SUS303、UHMW                                 |
| Fluid body                   | SUS303                                      |
| Fluid inlet port             | 1/4 NPT female                              |
| Fluid outlet port            | 1/4 NPT female                              |
| Mounting hole                | M8 female                                   |
| Valve operating air pressure | 0.4~0.62MPa                                 |
| Maximum fluid pressure       | 0.7MPa                                      |

\*Ultra High Molecular Weight

#### How the Valve Operates

Input air pressure forces the sealing head to move down, permitting fluid to flow. (Figure 1)

Once the cycle is completed, the spring retracts the piston and the sealing head closes to shut off the fluid and pull back a slight amount of fluid to clearly cut it off. (Figure 2)



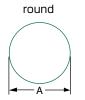


### SV91

#### Low volume, low pressure spray coatings enable high transfer efficiency

SV91 spray valve is designed to provide consistent coating of low to medium viscosity fluids with low volume low pressure air without causing overspray or misting.

With the selection of the most appropriate nozzle, the spray quality can be perfectly controlled.


#### **Specifications**

| Size                         | $\phi$ 26.9mm (Fluid body) $\times$ 105mm length |
|------------------------------|--------------------------------------------------|
| Weight                       | 294g                                             |
| Air cylinder body            | SUS303                                           |
| Piston needle                | SUS303                                           |
| Needle packing               | SUS303, Teflon                                   |
| Fluid body                   | SUS303                                           |
| Nozzle air cap               | SUS303                                           |
| Fluid inlet port             | 1/8NPT female                                    |
| Mounting hole                | M6 female                                        |
| Valve operating air pressure | 0.4~0.62MPa                                      |
| Maximum nozzle air pressure  | 0.2MPa (Standard)                                |
| Maximum fluid pressure       | 2.0MPa                                           |
| Free flow orifice (special)  | #46、#28、#14                                      |

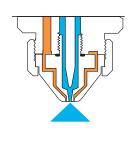
#### Spray Coverage Area

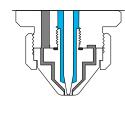
#### Round Pattern Spray Coverage (A)

| Nozzle distance | Nozzle size |      |      |
|-----------------|-------------|------|------|
| from surface    | #46         | #28  | #14  |
| 25mm            | 6mm         | 5mm  | 4mm  |
| 50mm            | 13mm        | 10mm | 8mm  |
| 75mm            | 19mm        | 15mm | 12mm |
| 150mm           | 36mm        | 30mm | 24mm |



#### Fan Pattern Spray Coverage (B)


| Nozzle distance |       | Nozzle size |      |      |  |
|-----------------|-------|-------------|------|------|--|
| from surface    | #46WF | #46F        | #28F | #14F |  |
| 25mm            | 40mm  | 25mm        | 10mm | 8mm  |  |
| 50mm            | 60mm  | 40mm        | 20mm | 16mm |  |
| 75mm            | 80mm  | 50mm        | 30mm | 24mm |  |
| 150mm           | 165mm | 80mm        | 60mm | 50mm |  |




#### How the Valve Operates

Input air pressure retracts the needle from the nozzle seat, allowing fluid to flow. At the same time, nozzle air flows around the nozzle and atomizes the fluid into fine droplets. (Figure 1)

Once the cycle is completed, the spring returns the piston needle back to its position to shut off the fluid. (Figure 2)





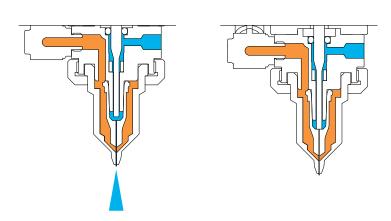




### SV59MS

#### Ensuring thin-film spraying as small as 2 $\mu$ m

SV59MS, precision micro spray valve, using a small gauge needle tip, enables fine spraying of low to medium viscosity fluid over a narrow area without scattering.


#### **Specifications**

| Size                             | H91mm×¢27mm                                                         |
|----------------------------------|---------------------------------------------------------------------|
| Weight                           | 280g (362g)*() with solenoid valve                                  |
| Air cylinder                     | SUS303                                                              |
| Needle                           | SUS303                                                              |
| Needle packing                   | PTFE, FKM                                                           |
| Fluid chamber                    | SUS303, PTFE                                                        |
| Syringe fitting                  | SUS303, FKM、PP                                                      |
| Fluid inlet thread               | M5                                                                  |
| Valve operating air inlet thread | M6                                                                  |
| Valve operating air pressure     | 0.4 ~ 0.62Mpa                                                       |
| Maximum fluid pressure           | 0.7Mpa                                                              |
| Dispensing tip                   | GP Needle tip 23G (ID: $\phi$ 0.33mm) $\sim$ 33G(ID: $\phi$ 0.11mm) |

#### How the Valve Operates

Input air pressure retracts the piston needle from the hub of the dispensing tip, permitting fluid to flow. (Figure 1)

Once the cycle is completed, the spring returns the piston needle back to its position in the dispensing tip to shut off the fluid. (Figure 2).







#### Spray valve Controller SVC620S

SVC620S provides low volume, low pressure fine spray coating driven by a solenoid and nozzle pressure.

Stackable exterior face Nozzle air delay function for reliable shut off · Teaching function allows for spray volume





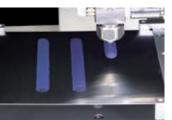
#### Spray valve Controller SVC620S

SVC620S provides low volume, low pressure fine spray coating driven by a solenoid and nozzle pressure.

- Stackable exterior face
  - Nozzle air delay function for reliable shut off Teaching function allows for spray volume



### **SV01S**

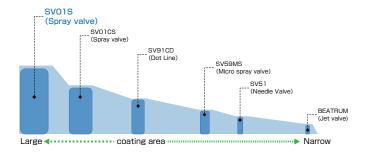

### Precise coating for high viscosity materials without over spraying

Precision coating spray valve, SV01S, can apply materials with viscosity as high as 30,000 mPa·s. SV01S is ideally designed for applications of silicon, UV adhesive, or grease, which are likely causing splattering in dispensing. Different type of nozzle and air can be used with the valve to optimize a spray pattern.

#### **Specifications**

| Size                                                               | φ26.9mm (Fluid body) x 105mm length |
|--------------------------------------------------------------------|-------------------------------------|
| Weight                                                             | 312g                                |
| Air cylinder body                                                  | SUS303                              |
| Piston needle                                                      | SUS303                              |
| Needle packing                                                     | SUS303、Teflon®                      |
| Fluid body                                                         | SUS303                              |
| Nozzle / air cap                                                   | SUS303                              |
| Fluid inlet thread                                                 | 1/8NPT female                       |
| Valve operating air inlet thread                                   | M5×0.8 female                       |
| Nozzle air inlet thread                                            | M5×0.8 female                       |
| Mounting                                                           | M6×1 tap hole                       |
| Valve operating air pressure                                       | 0.4~0.62MPa                         |
| Maximum nozzle air pressure                                        | 0.5MPa                              |
| Maximum fluid pressure                                             | 0.7MPa                              |
| + Florid for all to a most of attribute a standard to be a section | •                                   |

<sup>\*</sup> Fluid feeding part of stainless steel valve is passivation treated.





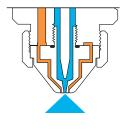

SV01S

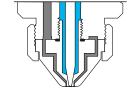
conventional spray valve

#### Nozzle and Cap selection based on coating width



#### Spray valve Controller SVC620S


SVC620S provides low volume, low pressure fine spray coating driven by a solenoid and nozzle pressure.


Stackable exterior face
 Nozzle air delay function for reliable shut off
 Teaching function allows for spray volume adjustment



### How the Valve Operates

Input air pressure retracts the needle from the nozzle seat, allowing fluid to flow. At the same time, nozzle air flows around the nozzle and atomizes the fluid into fine droplets. (Figure 1) Once the cycle is completed, the spring returns the piston needle back to its position to shut off the fluid. (Figure 2)

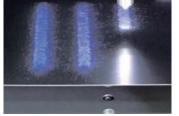








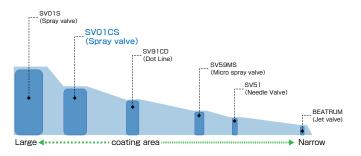
### SV01CS


# Precise coating for high viscosity materials without over spraying

Precision coating spray valve, SV01CS, can apply materials with viscosity as high as 10,000mPa(s). SV01CS is ideally designed for application of non-solvent moisture-proof coating materials. The unique design of the valve tip allows for accessibility and application around tight, high mounted components.

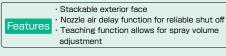
#### Specifications

| size                          | φ26.9 mm (fluid body) ×143 mm length |
|-------------------------------|--------------------------------------|
| weight                        | 312g                                 |
| Air cylinder body             | SUS303                               |
| Piston needle                 | SUS303                               |
| Needle packing                | SUS303, Teflon®                      |
| fluid chamber/ extension      | SUS303                               |
| Nozzle and air cap            | SUS303                               |
| Fluid inlet thread            | 1/8NPT Female                        |
| Mounting hole                 | M6 Female                            |
| Valve operating air pressure  | 0.4~0.62MPa                          |
| Maximum nozzle air pressure   | 0.4MPa                               |
| Maximum fluid pressure        | 0.7MPa                               |
| Applicable nozzle (dedicated) | #04 #07 #11                          |
| Nozzle drying protection cap  | Supplied as standard                 |






SV01CS

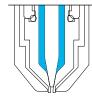

conventional spray valve

#### Nozzle and Cap selection based on coating width



#### Spray valve Controller SVC620S

SVC620S provides low volume, low pressure fine spray coating driven by a solenoid and nozzle pressure.






#### How the Valve Operates

At the same time as (Figure 1), the nozzle air flows around the air cap to atomize the fluid into fine droplets. (Figure 2) Once the cycle is completed, the spring returns the piston needle back to its position to shut off the fluid. (Figure 3)









### SV91CD

#### Non-contact dot, Spray Line, can be selected with one valve

SV91CD is designed to dispense conformal coating materials into three different patterns,

"non-contact dot," "spraying" or "line dispensing," to properly cover a restricted area.



Non-contact dot dispensing

in 5mm width





Spraving in 3mm width

Line dispensing in 2mm width

#### **Specifications**

| Size                         | $\phi$ 26.9mm (Fluid body) × 136.3mm length |
|------------------------------|---------------------------------------------|
| Weight                       | 312g                                        |
| Air cylinder body            | SUS303                                      |
| Piston needle                | SUS303                                      |
| Needle packing               | SUS303, Teflon                              |
| Fluid body / Extension       | SUS303                                      |
| Nozzle air cap               | SUS303                                      |
| Fluid outlet port            | 1/8NPT female                               |
| Mounting hole                | M6 female                                   |
| Valve operating air pressure | 0.4~0.62MPa                                 |
| Maximum nozzle air pressure  | 0.2MPa (Standard)                           |
| Maximum fluid pressure       | 0.7MPa                                      |
| Free flow orifice (special)  | #14                                         |

#### How the Valve Operates

#### <Non-contact dot dispensing>

Input air pressure retracts the piston needle from the nozzle seat, allowing fluid to flow. (Figure 1)

Piston needle's instant shut-off creates non-contact dots. (Figure 3)

#### <Spraying>

At the same time as (Figure 1), the nozzle air flows around the air cap to atomize the fluid into fine droplets. (Figure 2)

Once the cycle is completed, the spring returns the piston needle back to its position to shut off the fluid. (Figure 3)

Figure 1











Figure 3

#### <Line dispensing>

Input air pressure retracts the piston needle from the nozzle seat, allowing fluid to flow to create a bead for the duration that it remains open. (Figure 1)

Once the cycle is completed, the spring returns the piston needle back to its position to shut off the fluid. (Figure 3)

#### Valve Controller SVC620CD specified for SV91CD

SVC620CD directly controls SV91CD to provide dot, spray or line dispensing patterns.

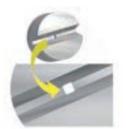


Faster response time

Stabilized by internal precision regulator Both post and pre-nozzle air can be fine-tuned






\*Solenoid valve SVEM720 or SVEM800 should be used

### **SV70**

Precision conformal coating dispensing moisture-proof material into thin film patterns

SV70 conformal coating valve is designed to apply various patterns of moisture-proof materials coating on PCBs with a lower flow rate. With an innovatively designed square-cut nozzle, SV70 ensures superior stability without overspray, as well as a faster and drip-free dispensing process.





Spray pattern

How the Valve Operates

Square-cut nozzle

#### **Specifications**

| Size                         | $\phi$ 26.9 (Fluid body) × 141.0mm     |
|------------------------------|----------------------------------------|
| Weight                       | 334g (except fluid inlet fitting part) |
| Air cylinder body            | SUS303                                 |
| Piston needle                | SUS303                                 |
| Needle packing               | SUS303, Teflon                         |
| Fluid body / Extension       | SUS303                                 |
| Tip adapter                  | SUS303                                 |
| Fluid outlet port            | 1/8NPT female                          |
| Mounting hole                | M6                                     |
| Valve operating air pressure | 0.4~0.62MPa                            |
| Valve operating air pressure | 0.7MPa                                 |
| Free flow orifice (special)  | #9、#6、#4                               |

#### Spray Coverage Area

#### Input air pressure retracts the piston needle from the nozzle seat, allowing fluid to flow. (Figure 1)

Once the cycle is completed, the piston spring returns the piston needle back to its position to shut off the fluid. (Figure

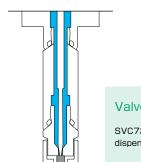
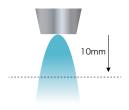




Figure 2

#### Nozzle size #6 11mm



#### Valve controller SVC720F

SVC720F directly controls SV70 with excellent high-speed response for maximium pneumatic solenoid dispensing performance.

- · Stackable squared design
  - Fast response solenoid allows rapid
  - Stabilized by internal precision regulator

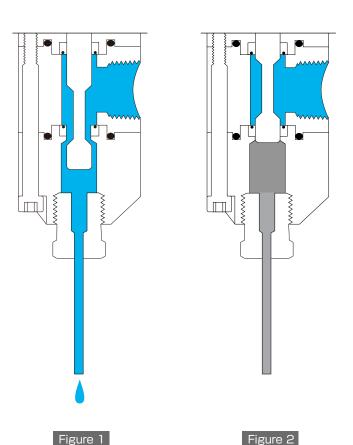


\*Solenoid valve SVEM720 or SVEM800 should be used.



### High pressure spool valve for applying a neat bead of sealant and grease

SV46 is a pneumatic, balanced spool valve for consistent dispensing of industrial sealants, silicones and greases at input pressures up to 17.2MPa.


#### **Specifications**

| Size                         | φ38.1mm (Fluid body) X 119.4mm length |
|------------------------------|---------------------------------------|
| Weight                       | 728g                                  |
| Fluid body and cap           | Stainless steel                       |
| Air cylinder                 | Stainless steel                       |
| Air cylinder cap             | Aluminium                             |
| Spool shaft                  | Stainless steel (hard chrome plate)   |
| Upper/lower sealing          | UHMW*, EPR                            |
| Fluid inlet port             | 3/8 NPT female                        |
| Fluid outlet port            | 1/4 NPT female                        |
| Aux air inlet                | 1/8 NPT female                        |
| Valve operating air pressure | 0.48 ~ 0.62MPa                        |
| Maximum fluid pressure       | 17.2MPa                               |

\*Ultra High Molecular Weight

#### How the Valve Operates

Input air pressure retracts the spool shaft, allowing fluid to flow. (Figure 1) Once the cycle is completed, the spring returns the spool shaft back to its original position to shut off the fluid. (Figure 2)





Standard Valve Controller

#### SVC720V



Consistent, precise volume control for high precision dispensing valves **SVC620S** 



Spray valve controller

(specified for SV91, SV59MS)

All digital display ensures versatility and flexibility for precise spray control

Conformal coating valve controller

#### Coating dot valve controller

(specified for SV91CD)

#### SVC620CD



Non-contact dot, spray line dispensing can be selected \*Solenoid valve SVEM720 or SVEM800 should be used.

Solenoid valve Solenoid valve

SVC720F



Solenoid valve Solenoid valve

(specified for SV70)

Fast response pneumatic solenoid maximizes dispensing performance

\*Solenoid valve SVEM720 or SVEM800 should be used.

#### **Specifications**

|                                                      | SVC720V                                          | SVC620S                       | SVC620CD                  | SVC720F |
|------------------------------------------------------|--------------------------------------------------|-------------------------------|---------------------------|---------|
| Power                                                |                                                  | DC24V (VAC100-240 adapter)    |                           |         |
| Power consumption                                    |                                                  | 18W                           |                           |         |
| Air Input requirement                                |                                                  | 0.4MPa~0.                     | 7MPa                      |         |
| Pressure setting range                               | 0~(                                              | 0.50MPa ( Valve operating pre | ssure: more than 0.40MPa) |         |
| Nozzle air pressure setting range                    | — 0∼0.50MPa —                                    |                               |                           | _       |
| Time setting range                                   | 0.005~999.9sec                                   |                               |                           |         |
| Start input                                          | Footpedal, Band switch, signal for VDC5-24 (I/O) |                               |                           |         |
| I/O                                                  | D-sub 9 pin connector                            |                               |                           |         |
| Storage condition                                    | 5°C∼40°C ( non-condensing)                       |                               |                           |         |
| External dimensions ( ) including protruding portion | W250×D139(177)×H76(78) W160×D139(176)×H76(78)    |                               |                           |         |
| Weight                                               | 1.5kg 1.4kg 0.                                   |                               |                           | 0.8kg   |
| Accessories                                          | AC adapter Foot pedal switch                     |                               |                           |         |

unit:mm

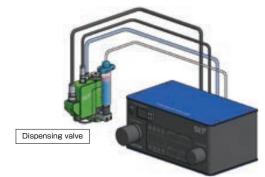
# Beatrum® · Beatrum-H

BEATRUM is a fast and high precision jet dispenser specifically for micro dispensing. equipped with a heater as standard, applying viscous materials ranging from low to high consistently.

BETRUM-H is designed for precise jetting mid-to high viscosity materials just by exchanging a tip. Interchangeable striker seat part enables to apply various fluids such as silicone.

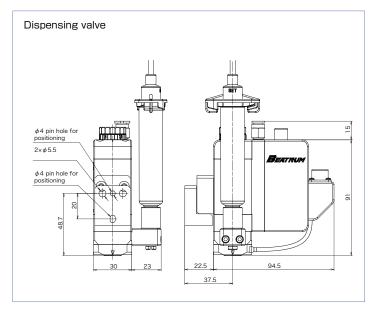
#### Specifications

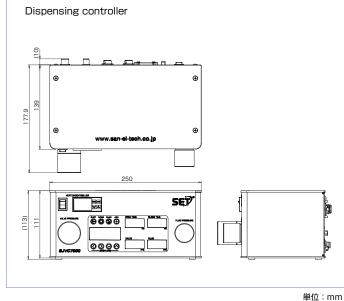
|             |           | Dispensing valve |            | Dispensing controller |
|-------------|-----------|------------------|------------|-----------------------|
| mod         | lel       | SJVH7000         | SJVH7000-H | SJVC7000              |
|             | W         | 53mm             |            | 250mm                 |
| Size        | Н         | 95mm             |            | 113mm                 |
|             | D         | 106mm            |            | 188mm                 |
| Weig        | ght       | 650g             |            | 1800g                 |
| Spee        | ed        | Up to            |            | 250Hz                 |
| Min. dispen | sed width | $\phi$ 0.3       |            | Bmm                   |
| Pow         | er        | VDC24 (AC100 ·   |            | ~ 240V adapter)       |


#### **Applications**

Underfill, dam & fill, moisture-proof coating material, UV adhesive, grease, oil, silver paste, paint, ink, primer, solvent, etc.




Acrylic two-component adhesive


#### Diagram



Dispensing controller

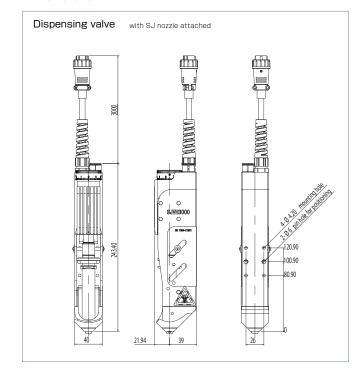
#### Dimensions

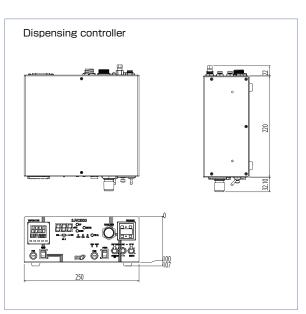




### ..NOVADOT:

NOVADOT is a unique electromagnetic-driven jet dispenser providing high-speed delivery and exceptional volumetric control for various low to medium viscosity fluids. Combining controller programming with a temperature-controlled rigid dispensing head makes this system ideal for robotic applications.


#### Specifications


|                             | Dispensing valve<br>SJVH3000                                      | Dispensing controller<br>SJVC3000 |  |
|-----------------------------|-------------------------------------------------------------------|-----------------------------------|--|
| Size mm (W×D×H)             | 40×61.0×244.0                                                     | 250×220×107                       |  |
| Weight                      | 720g                                                              | 5700g                             |  |
| Power                       | 100VAC.                                                           | 50/60Hz                           |  |
| Input consumption current   | 3A/AC1                                                            | 00V                               |  |
| Muxmum inlet pressure       | 0.60                                                              | ЛРа                               |  |
| Viscosity range             | 1-50Pa·s                                                          | (50kcps)                          |  |
| Speed                       | Up to 100Hz (300Hz with an optional special engine)               |                                   |  |
| Nozzle heater               | Heating up to 100°C - Max                                         |                                   |  |
| Ambient operating condition | 5℃~40℃ (non-condensing)                                           |                                   |  |
| Nozzle size (special)       | 0.11mm ~ 0.91mm                                                   |                                   |  |
| Fluid syringes              | 5,10,30cc (55cc option)                                           |                                   |  |
| Input/Output                | Dsub15 pin connector (Dsub25 pin connector/external time control) |                                   |  |





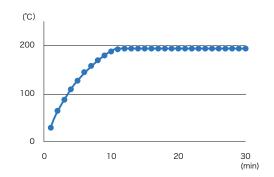
#### **Dimensions**



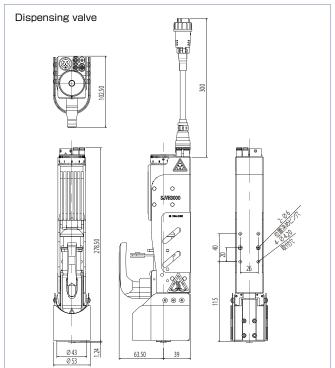


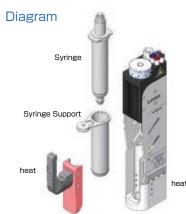
unit: mm

### ..NOVADOT:HM

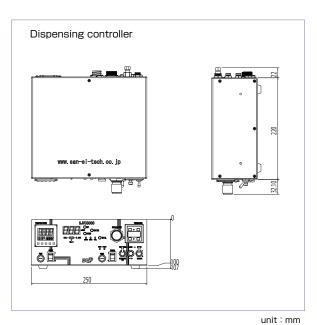

NOVADOT-HM is specifically designed for precisely dispensing PUR material equipped with a heater that increases the temperature up to  $200\,^{\circ}$ C.

Excellent thermal efficiency and compatible with various PUR materials enhances precise non-contact dispensing for dot or bead application.


#### Specifications


| Head                      | SJVH3000-HM                                                  |
|---------------------------|--------------------------------------------------------------|
| Size                      | W53mm×H278.5mm×D102.5mm                                      |
| Weight                    | 1,400g                                                       |
| Drive method              | Electromagnetically driven                                   |
| Engine cooling system     | Air cooling (air consumption 30L/min)                        |
| Temperature control range | 80 to 200℃                                                   |
| Heater module             | Japanese rating: 100V 250W Overseas rating: 240V 250W        |
| Syringe to be applied     | 30cc High Temperature type                                   |
| Nozzles to be applied     | PJ needle, short needle, super short nozzle                  |
| Temperature control range | $0\sim$ 0.6Mpa (depending high temperature of using syringe) |

#### Temperature data




#### Dimensions







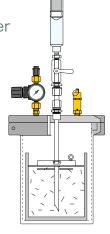




#### Syringe filling equipment

Instant filling station to be placed near the operating area

#### Specification


| filling type                   | pressurized /downward filling             |
|--------------------------------|-------------------------------------------|
| accuracy                       | +/- 2% (depending on a setting condition) |
| flow rate                      | up to 0.55 MPa                            |
| supplying pressure             | 0-0. 7MPa                                 |
| power                          | VAC100-240                                |
| power consumption              | 100W                                      |
| number of barrels to be filled | 1 piece/cycle                             |



### Pressurized syringe filling system Syringe filling fed with a 1-2 kg container

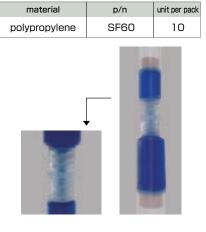
#### Specification

| filling type                   | pressurized / downward filling |
|--------------------------------|--------------------------------|
| filling method                 | manual opening/ closing        |
| supplying pressure             | 0-0.45MPa                      |
| power                          | not required                   |
| Number of barrels to be filled | 1 piece / cycle                |



image

#### Manual loader


No power required to ensure easy operating



- · simple structure for easy setting
- · 330ml cartridge container is available

#### Syringe filling adapter

Used with a mid to high viscosity fluid for dispensing into small size syringes (common to 3cc, 5cc, 10cc, 30cc, 55cc and 75cc)







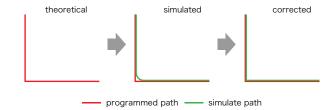
Precision Automated Vision Dispensing System AXELIA All-in-one dispensing solution for critical

dispensing demands

High precision automatic vision guided dispensing system AXA series, equipped with simple image processing features enables flexible and intuitive operation applied for various assembling processes that require high level of dispensing conditions.

#### Fluid Magic's advanced capabilities

Flexible motion control helps to extend the functions towards versatile applications.


#### ■ Block offset feature

Making global changes to batch or group of address in a program only by selecting two points in X, Y, and theta directions allows for faster programming.



#### ■ Pre-dispense simulate path feature

Provides user the ability to visually review dispensing programmed path and estimated cycle speed before running actual program.



Automatically duplicates a single dispensing dot or path points into multiple

#### Encapsulation feature

Few, easy steps allows users define area, shape and coverage to be filled.

Program command enables easy adjustment to fine-tune dispensing parameters to be filled.











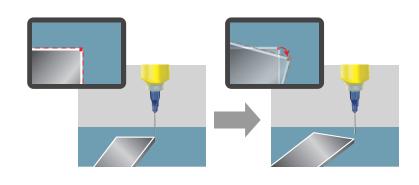


# Array X

Automatic array repeat feature

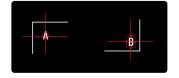
within a grid pattern in X or Y direction.





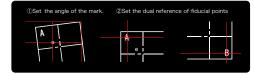




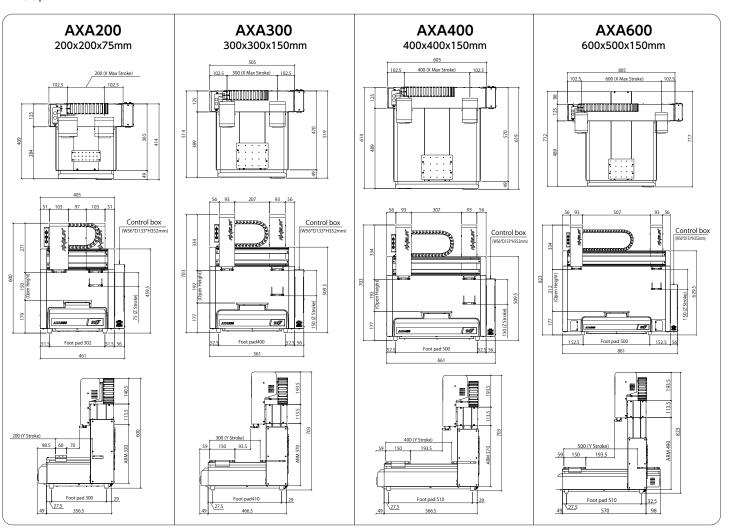


#### Simple Vision teaching through searching & pointing

All steps of the programming process can be visually steered for precise calibration and offsets.




#### ■ Image alignment feature

Dual references for fiducial marks in X / Y align entire part and adjust all dispense points in program




#### Image correction feature

Angle correction allows identification of part orientation and changes programing from original for seamless uninterrupted dispensing

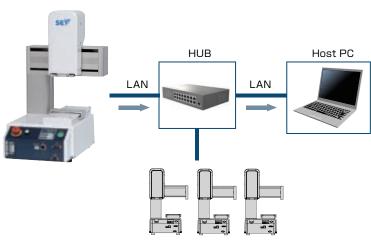


#### Lineup



#### Specifications Vision System-ADVANCED (3 Axis)

| Item                      |                    | AXA200                                                                                                                 | AXA300             | AXA400          | AXA600    |  |
|---------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|-----------|--|
| Number of Axis            |                    | 3 Axis                                                                                                                 |                    |                 |           |  |
| Operating Range           | X & Y Axis         | 200 / 200                                                                                                              | 300 / 300          | 400 / 400       | 600 / 500 |  |
|                           | Z Axis             | 75mm                                                                                                                   |                    | 150mm           | •         |  |
| Maximum Portable Load     | X Axis (Tool)      | 3KG                                                                                                                    |                    | 5KG             |           |  |
|                           | Y Axis (Workpiece) |                                                                                                                        | 10k                | (G              |           |  |
| Maximum Speed (PTP Drive) | X Axis             | 500 mm/sec                                                                                                             |                    | 800 mm/sec      |           |  |
|                           | Y Axis             | 500 mm/sec                                                                                                             |                    | 800 mm/sec      |           |  |
|                           | Z Axis             | 200 mm/sec                                                                                                             |                    | 320 mm/sec      |           |  |
| Repeatability (Robot)     | X, Y, Z Axis       |                                                                                                                        | ± 0.00             | 08mm            |           |  |
| Data Storage              |                    | PC storage                                                                                                             |                    |                 |           |  |
| Interpolation             |                    | 3 axes (3D space)                                                                                                      |                    |                 |           |  |
|                           | Languages          | English (Standard), Japanese                                                                                           |                    |                 |           |  |
| Drive Movement            |                    |                                                                                                                        | PTP 8              | & CP            |           |  |
| External Input/Output     | I/O                |                                                                                                                        | 32 inputs /        | 32 outputs      |           |  |
| Tip Detection System      |                    |                                                                                                                        | Optional (Co       | ontact type)    |           |  |
| Vision                    | Camera             | USB-standard vision / CCD-High-precesion                                                                               |                    |                 |           |  |
|                           | Lens               | Included                                                                                                               |                    |                 |           |  |
|                           | Lighting           | Included                                                                                                               |                    |                 |           |  |
| Power Supply              |                    |                                                                                                                        | Auto-switching AC1 | 00-240V 50/60Hz |           |  |
| Operating                 | Temperature        |                                                                                                                        | 10 ~               | 40℃             |           |  |
| Environment               | Relative Humidity  |                                                                                                                        | 20 ~ 90% (noi      | n condensing)   |           |  |
|                           | Liner Guide        |                                                                                                                        | Single LA          | Λ Guide         |           |  |
|                           | Drive Method       | XY Axis / 3-Phase Micro Stepping Motor / Synchronous belt Z Axis / 3-Phase Micro Stepping Motor / Precision Ball Screw |                    |                 |           |  |


Increased structural rigidity, faster speed and well-enhanced communication capability, ready for manufacturing processes

aimed at IoT

The SR Series is a multifunction robot designed with both cell production sites and automated inline installation in mind. The Ethernet (LAN) is included as standard equipment and the faster speed up to 900mm/sec ensures greater output on production lines.

#### Increased communication capability

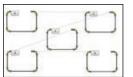
A LAN port included as standard equipment allows users to control several robots from one PC.

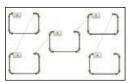




#### ■ PC software "JR C-points II" (optional)

"JR C-points II" is application software which allows users to create, edit and save teaching and customizing data all on a PC, as well as set points and create and edit point commands more smoothly.

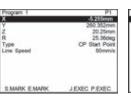

#### NEW Point graphic editing function screen


Create path data based on DXF, Gerber or JPEG background image data and optimize programming potential by using several different functions to create even better teaching data.





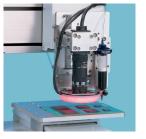
#### Point order sorting function (shorter tact times)






#### Easy Teaching

Using the dedicated dispensing application software, all you need to do is select the positions where you want the needle tip to go (point) and dispense. (10 different display languages)






Point values setting screen Point type selection screen

#### ■ Easy camera system installation

With such functions as automatic calibration or CCD camera adjustment, it is easy to create a comprehensive machine vision system package just through COM ports (COM1 is installed as a standard).



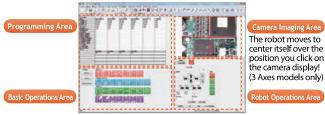
#### Lineup 3-Axis type



#### **Specifications**

|                            |           | Model                   |                                                                                                                                                                                                          | 3-Axis      | type (synchi   | ronous contro   | ol)               |                      | 4-Axis ty        | pe (synchror   | ous control) |            |
|----------------------------|-----------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-----------------|-------------------|----------------------|------------------|----------------|--------------|------------|
| Item                       |           |                         | S203                                                                                                                                                                                                     | S303        | S403           | S503            | S603              | S204                 | S304             | S404           | S504         | S604       |
| Operation                  |           | X & Y Axes (mm)         | 200×200                                                                                                                                                                                                  | 300×320     | 400×400        | 510×510         | 510×620           | 200X200              | 300X320          | 400X400        | 510X510      | 510X620    |
| range                      |           | Z Axes (mm)             | 50                                                                                                                                                                                                       | 100         | 150            | 150             | 150               | 50                   | 100              | 150            | 150          | 150        |
|                            |           | R Axes (°)              |                                                                                                                                                                                                          |             | _              | 1               |                   |                      | I                | ±360°          | l            |            |
| Portable                   |           | X Axes (Workpiece) (kg) | 7                                                                                                                                                                                                        | 15          | 15             | 15              | 15                | 7                    |                  | 1              | 5            |            |
| weight                     |           | Y Axes (Tool) (kg)      | 3.5                                                                                                                                                                                                      | 7           | 7              | 7               | 7                 | 3.5                  |                  |                | 7            |            |
| Maximum                    |           | X & Y Axes (mm/sec)     | 7~700                                                                                                                                                                                                    | 9~900       | 9~900          | 9~900           | 9~900             | 7~700                |                  | 9~             | 900          |            |
| speed (PTP)                | )*1       | Z Axes (mm/sec)         | 2.5~250                                                                                                                                                                                                  | 4~400       | 4~400          | 4~400           | 4~400             | 2.5~250              |                  | 4~             | 400          |            |
|                            |           | R Axes (°/sec)          |                                                                                                                                                                                                          | ı           | _              |                 |                   | 6~600                |                  | 9~             | 900          |            |
| Maximum spe                | ed (CP)*1 | XYZ combined (mm/sec)   | 0.1~600                                                                                                                                                                                                  | 0.1~850     | 0.1~850        | 0.1~850         | 0.1~850           | 0.1~600              |                  | 0.1~           | -850         |            |
| R axis allowa              | able mome | ent of inertia          |                                                                                                                                                                                                          |             | _              |                 |                   | 65kg·cm <sup>2</sup> |                  | 90kg           | ı·cm²        |            |
| Repeatabilit               | ty*2      | X & Y Axes (mm)         | ±0.006                                                                                                                                                                                                   | ±0.007      | ±0.007         | ±0.008          | X:±0.008 Y:±0.01  |                      | I .              | ±0.01          |              |            |
|                            |           | Z Axes (mm)             | ±0.006                                                                                                                                                                                                   | ±0.007      | ±0.007         | ±0.008          | ±0.008            |                      |                  | ±0.01          |              |            |
| R Axes (                   |           | R Axes (°)              |                                                                                                                                                                                                          |             | _              | l               |                   |                      |                  | ±0.08          |              |            |
| Dimensions<br>(Excluding p |           | ns) (mm)*3              | 323×387×554                                                                                                                                                                                              | 560×535×659 | 584x631x807    | 678×731×807     | 790×731×807       | 323x387x676          | 560x535x844      | 584x631x894    | 678x731x894  | 790x731x89 |
| Body weight(kg)            |           | 20                      | 35                                                                                                                                                                                                       | 42          | 44             | 45              | 22                | 38                   | 46               | 47             | 48           |            |
| Power source               |           |                         | AC90~125V / AC180~240(single-phase)                                                                                                                                                                      |             |                |                 |                   |                      |                  |                |              |            |
| Power consumption          |           | 200W                    |                                                                                                                                                                                                          |             |                |                 |                   |                      |                  |                |              |            |
| Drive method               |           |                         | 5 Phase Pulse Motor                                                                                                                                                                                      |             |                |                 |                   |                      |                  |                |              |            |
| Teaching system, type      |           | oe                      | ·Easy, common teaching system using the original software. ·Direct teaching with Teaching pendant (option). ·Offline teaching with PC (option) by PC utilizing patterns created in CAD or other formats. |             |                |                 |                   |                      |                  |                |              |            |
| Program ca                 | pacity    |                         | 999 programs                                                                                                                                                                                             |             |                |                 |                   |                      |                  |                |              |            |
| Database ca                | apacity*4 |                         | Maximum32,000 points                                                                                                                                                                                     |             |                |                 |                   |                      |                  |                |              |            |
| Simple PLC                 | function  | s                       | Up to 100 programs, with up to 1,000 steps/program                                                                                                                                                       |             |                |                 |                   |                      |                  |                |              |            |
| External                   | Standard  | I/O-SYS                 | 16 Inputs/ 16 Outputs                                                                                                                                                                                    |             |                |                 |                   |                      |                  |                |              |            |
| interface                  |           | COM1                    |                                                                                                                                                                                                          |             |                | RS232C          | (for external dev | vices, COM con       | nmands)          |                |              |            |
|                            |           | MEMORY                  |                                                                                                                                                                                                          | USB         | memory conne   | ctor (save and  | readout teaching  | g and customiz       | ring data, backu | p system softw | vare)        |            |
|                            |           | LAN                     |                                                                                                                                                                                                          | Eth         | ernet connecto | r for PC (conne | ect to PC softwa  | are, operate the     | e robot using co | ontrol command | ds)          |            |
|                            | Options   | I/O-1                   | 8 Inputs/ 8 Outputs (including 4 relay outputs) (Optional)                                                                                                                                               |             |                |                 |                   |                      |                  |                |              |            |
|                            |           | I/O-MT                  |                                                                                                                                                                                                          |             |                | Contro          | ls up to 2 exter  | nal motors (Op       | tional)          |                |              |            |
|                            |           | I/O-S                   |                                                                                                                                                                                                          |             |                | Interlock co    | nnector for an a  | area sensor, etc     | c. (Optional)    |                |              |            |
|                            |           | Fieldbus                |                                                                                                                                                                                                          |             |                | CC-Lin          | k / DeviceNet /   | PROFIBUS (Op         | tional)          |                |              |            |
| COM2·COM3                  |           |                         | RS232C (for external devices)(Optional)                                                                                                                                                                  |             |                |                 |                   |                      |                  |                |              |            |

- \*1 : Maximum speed can very depending upon conditions.
- \*2 : Repeatability was measured at a constant temperature and does not represent a guarantee of absolute precision.
- \*3: SRS-S403 Double Column Type have different outer domensions and weights.
- \*4 : Point data memory capacity reduces as addictional function data settings/point job data/squencer data are added, due to the shared data storage area.


4 Axes Specifications

#### Cartesian robot extends versatility and flexibility in various applications

SCR series is simple and multifunctional cartesian robots, configured with 3-axis / 4-axis type, operated by the specified controller. Easy programming teach system with camera functions installed can save set-up time substantially.

#### ■ USB Camera Teaching (PC Software JR C-Points II)

By connecting a store-bought USB camera\* to your PC, you can display enlarged images on your PC and set program points. Select movements using the icons for simple, accurate teaching.



PC Software JR C-Points II Screen Display For information about compatible USB cameras, please contact us

#### **4** Axes Specifications

Through the synchronous control of 4 axes, jobs which are difficult for a 3 axes robot such as dispensing or soldering on the wall of a cylindrical workpiece become much easier. Adding a 4th axis opens the door to even greater manufacturing possibilities.



Dispensing with 4 Axes

#### I/O-MT Function for up to 2 Additional Motors (Optional)

Teach up to 2 external pulse string input motors the same as with the robot axes to control an elevated angular motor axis or control a conveyor for transporting workpieces.



#### Multilingual Teaching Display

Switch freely among 11 different languages on the teaching pendant display.

| Disp <b>l</b> ay L  | anguage             |
|---------------------|---------------------|
| English             | English English     |
| Japanese            | Japanese            |
| German              | Germa               |
| Italian             | Italia              |
| Spanish             | Spanisl             |
| French              | Frenci              |
| Korean              | Korea               |
| Simplified Chinese  | Simplified Chines   |
| Czech               | Czec                |
| Vietnamese          | Vietnames           |
| Traditional Chinese | Traditional Chinese |

Display Language Changing Screen

#### Needle Adjuster (Dispensing Specs Only)

When replacing a syringe or needle tip in the Dispensing Specifications, this function detects the amount of displacement from the original needle tip position and makes a position adjustment. Set up a simple adjustment program once, run it after needle replacement and it makes adjustments automatically. This function is usable with both 3 and 4 axes types.



4 Axes Needle Adjuster

#### Lineup



**Double Sided Type** 

Single Sided Type

|                                   |                                                                                                                                                                                                                                                     | 3 A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xes                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 A                                   | xes                      |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--|--|
| Model                             | Single                                                                                                                                                                                                                                              | Sided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Doub                                                                                                                                                                    | le Sided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Doubl                                 | e Sided                  |  |  |
|                                   | - Onigio                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | no olaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                          |  |  |
| X-Axis Stroke in 100mm Increments | 200/200/4                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | 0/500/600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                     | ,                        |  |  |
|                                   |                                                                                                                                                                                                                                                     | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 0/400/300                |  |  |
| . ,                               |                                                                                                                                                                                                                                                     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 360                      |  |  |
| 11 / M. Stroke (deg)              |                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | in pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     | X, Y, Z Axes (Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | edback Control)                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                   |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Δ, τιν στου (ο μ ο                    | 3                        |  |  |
| X-Axis Stroke                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300/400                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300/400                               | 500/600                  |  |  |
| X-Axis (mm/sec)                   | 700                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700                                                                                                                                                                     | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 700                                   | 800                      |  |  |
| Y-Axis (mm/sec)                   | -                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 00                       |  |  |
| Z-Axis (mm/sec)                   |                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                     | 00                       |  |  |
| R-Axis (deg/sec)                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 00                       |  |  |
| ertia (kg/cm²)                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g                                     | 90                       |  |  |
| X, Y-Axis (mm)                    |                                                                                                                                                                                                                                                     | ±0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .02                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0                                    | .02                      |  |  |
| Z-Axis (mm)                       | ±0.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .02                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0                                    | .01                      |  |  |
| R-Axis (deg)                      | N/                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /A                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.                                   | 008                      |  |  |
|                                   | W : Y-Axis Stroke + 319mm                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W : Y-Axis Stroke + 426mm                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W : Y-Axis Stroke + 426mm             |                          |  |  |
| Robot                             | D : X-Axis Stro                                                                                                                                                                                                                                     | oke + 309mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D : X-Axis St                                                                                                                                                           | D: X-Axis Stroke + 309mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | D: X-Axis Stroke + 309mm |  |  |
|                                   | H: Z-Axis Stro                                                                                                                                                                                                                                      | oke + 357mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H: Z-Axis Stroke + 357mm                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H: Z-Axis Stroke + 334mm              |                          |  |  |
| Controller                        | W170×D310×H300                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W170×D310                             | )×H300                   |  |  |
| Control Method                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | 3-dimensional linear and arc interpolation                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | Remote Teaching (JOG), Manual Data Input (MDI)                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | Direct teaching using optional teaching pendant;                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | Offline teaching using JR C-Points II (optional PC Software)                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | via PC: CAD Data (DXF, Gerber, jpeg) compatible                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
| Measurement Unit                  | mm, inch                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
| Language                          | English, Japanese, German, Italian, Spanish, French, Korean, Simplified Chinese, Traditional Chinese, Czech, Vietnamese                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | Maximum 32,000 Points                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | Maximum 100 Programs (Maximum 1,000 steps/program)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     | <b>i</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
| ,                                 | 8 Inputs/ 8 Outputs                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                       | ptional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                          |  |  |
| LAN                               |                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n to JR C-Points II PC so             | ftware)                  |  |  |
|                                   |                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | 150W (AC power supply), 300W (DC48V, motor drive power supply)                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
| Operating Environment Temperature |                                                                                                                                                                                                                                                     | 0~40°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
| iture                             | 0~40°C<br>20~85% (non conden                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |  |  |
|                                   | X-Axis Stroke in 100mm Increments Y-Axis Stroke (mm) Z-Axis Stroke (mm) R-Axis Stroke (deg)  X-Axis Stroke X-Axis (mm/sec) Y-Axis (mm/sec) Z-Axis (mm/sec) R-Axis (deg/sec) rtia (kg/cm²) X, Y-Axis (mm) Z-Axis (mm) R-Axis (deg) Robot  Controller | X-Axis Stroke in 100mm Increments  200/300/4 Y-Axis Stroke (mm) 200/ Z-Axis Stroke (mm) 8-Axis Stroke (deg)  X-Axis (mm/sec) 700 Y-Axis (mm/sec) R-Axis (deg/sec) P-Ttia (kg/cm²) X, Y-Axis (mm) R-Axis (deg)  W: Y-Axis Stroke D: X-Axis Stroke H: Z-Axis Stroke Controller  PTP (Point to Point), C 3-dimensional linear: Remote Teaching (JO) Direct teaching using Offline teaching using via PC: CAD Data (DXi Measurement Unit Language English, Japanese, Ge Maximum 999 Program Maximum 32,000 Poin Maximum 100 Program I/O-SYS I6 Inputs/ 16 Outputs I/O-1 I/O-MT Motor Control, Auxilia Fieldbus CC-Link/DeviceNet/Pl COM Port (RS232C) COM1, COM2, COM3, COM3, COM3, COM3, COM2, COM3, COM3, COM2, COM3 | X-Axis Stroke in 100mmIncrements   200/300/400/500/600     Y-Axis Stroke (mm)   200/300     Z-Axis Stroke (mm)   50/100/150/200     R-Axis Stroke (deg)   N/A   Steppin | X-Axis Stroke in 100mm Increments   200/300/400/500/600   300/400   Y-Axis Stroke (mm)   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/300   200/3 | Single Sided   Single Sided   3 (XYZ) | Mode                     |  |  |

#### <Notes>

- \*1 This value reflects the maximum portable load when measured with all the axes assembled. For details about acceleration rates, please contact us or visit our website.
- Maximum speed may be unreachable depending upon the tool attachment setup. The X and Y axes individual unit speed and acceleration are 800mm/s and 5000mm/s² respectively \*2 Position repeatability is measured for each axis at a constant temperature, so absolute precision is not guaranteed.
- \*3 Point memory capacity reduces as additional function data/point job data/sequencer data are added, due to the shared data storage area

<sup>\*4</sup> Please prepare a power supply of AC100V/200V or DC48V on your side.

#### AUTOTUBE

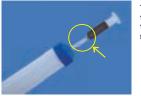
# **AUTOTUBE®**

AUTOTUBE system allows users to directly dispense a tube or a cartridge-type material like a silicon adhesive using a special container with air pressure instead of refilling it to other containers. The material can be dispensed without causing air bubbles and an operator can handle the operation without hand fatigue.



#### **Specifications**

|                       | ATD200CW-B                                                                              | ATD300CB-B                                                       |
|-----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                       |                                                                                         |                                                                  |
| Dispensing controller | SDP4                                                                                    | 400                                                              |
| AC adapter            | SD3                                                                                     | 14                                                               |
| Foot pedal switch     | FTSW001                                                                                 | (2.4m code)                                                      |
| Consumable parts      |                                                                                         | ize x 10 ) Retaining cap (10)<br>880012A(2)*1                    |
| Reservoir set         | 100/200g Tube holder : SAR20RAT<br>100/200g Retaining cap : SAR20RC<br>Air hose : SAR59 | 330g Outer reservoir set : 580091<br>(with end cap and air hose) |
| Tip adapter           | 7514-2 · Tip adapter for I                                                              | big taper tip: 7514-2PA*2                                        |
| Adapter*3             | 880001A · 880001B ( for each size x 2 )                                                 | 880003A · 880003B                                                |


\*Both 1 and 2 are included only in ATD300CB, ATD300CPB-S \*3 : Please contact us about different thread sizes for tube materials and adaptors from fluid material manufacturers.

### ■ ATD300CV-DAB AUTOTUBE set with dispensing valve

Combination with a dispensing valve provides better consistency and accuracy in fluid dispensing for an automation process.



#### ■ SF60 Adapter for fluid filling



This adapter allows for easily transferring the material inside the reservoir into a separate syringe.



alve Controller SVC720V Table-top robo

Table-top robot SR Series

#### 11 Peltier Syringe Temperature Control Unit

# Peltier auto-tuned syringe temperature controller maintains uniform temperature



Peltier Syringe Temperature Control Unit precisely controls temperature of the syringe which enables the fluid to reach the setting temperature in a very short time and maintain a uniform temperature for consistent dispensing.





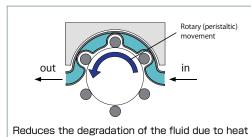
Temperature control block for syringe

Controller SPC100

#### Specifications

| Part number                         | SPC100                                    | SPB-3                                                                                                      | SPB-5                                          | SPB-10                                 | SPB-30                                 |  |  |
|-------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------|--|--|
| Туре                                | Controller                                | Peltier temperature control block 3cc                                                                      | Peltier temperature<br>control block 5cc       | Peltier temperature control block 10cc | Peltier temperature control block 30cc |  |  |
| Power                               | *Power cab                                |                                                                                                            | $ m OV\sim AC240V$ if the unit is used outside | e Japan. about 35W                     |                                        |  |  |
| Power rating                        |                                           | ab                                                                                                         | out 35W                                        |                                        |                                        |  |  |
| Heat radiation                      |                                           | Heat s                                                                                                     | sink + Fan type                                |                                        |                                        |  |  |
| Temperature setting rang            |                                           | 20-60 °C ( at the environmental temperature of 20-25°C)                                                    |                                                |                                        |                                        |  |  |
| Accuracy                            |                                           | ±0.1°C*1                                                                                                   |                                                |                                        |                                        |  |  |
| Selectable syringe size             |                                           | 3cc / 5cc / 10cc / 30cc syringe                                                                            |                                                |                                        |                                        |  |  |
| Selectable nozzles                  | *Plea                                     | GP needle tip (20-32G, 6.4mm length) *Please contact us if Precision nozzle or Metal nozzle are preferred. |                                                |                                        |                                        |  |  |
| Dimensions () including protrusions | W160×D242×H90mm<br>(163.3) (263.5) (94.4) | W40×D64×H77mm<br>(79)                                                                                      | W40×D68×H73mm<br>(79)                          | W40× D68 × H93mm<br>(79)               | W46×D76×H121mm<br>(82)                 |  |  |
| Weight                              | 2.4kg                                     | 300g                                                                                                       | 300g                                           | 310g                                   | 420g                                   |  |  |
| Accessories                         |                                           | power cable (2M)*², junction cable (2M)                                                                    |                                                |                                        |                                        |  |  |

<sup>\*1 :</sup> Measured at environmental temperature at25°C (tested fluid: water)


\*2 : forAC100V, domestic use,

#### Unique rotary mechanism applies a minute amount of instantaneous material

SRD250 is designed to apply various materials such as instant adhesives (cyanoacrylates), thread-locking fluids, anaerobic adhesives, solvents or medical fluids with rotary (peristaltic) movement instead of using pneumatic pressure and generates few air bubbles in the fluid, which is ideal for applications including consistent fluid dispensing, transferring and filling.



- Reduces stress on fluid feed tubes extending tube life
- Less heat transfer because of the rotary mechanical part



# SRD250 SED

#### PTFE tubing chart

| Size material: PTFE/ length: 10m (394") |               |               |              |  |  |  |
|-----------------------------------------|---------------|---------------|--------------|--|--|--|
|                                         | IDmm          | ODmm          | Thickness mm |  |  |  |
| AWG-11                                  | 2.41 (.095")  | 3.01 (.119")  | 0.30 (.012") |  |  |  |
| AWG-13                                  | 1.93 (.076")  | 2.53 (.100")  | 0.30 (.012") |  |  |  |
| AWG-16                                  | 1.35 (.053")  | 1.95 (.077")  | 0.30 (.012") |  |  |  |
| AWG-19*                                 | 0.96 (.038")  | 1.56 (.061")  | 0.30 (.012") |  |  |  |
| AWG-24                                  | 0.56 (.022")  | 1.06 (.042")  | 0.25 (.009") |  |  |  |
| AWG-26                                  | 0.46 (.018")  | 0.92 (.036")  | 0.23(.009")  |  |  |  |
| AWG-28                                  | 0.38 (.015")  | 0.84 (.033")  | 0.23 (.009") |  |  |  |
| 70 2.0                                  | 0.50 (10.15 ) | 0.0 1 (1000 ) | 0.23 (100)   |  |  |  |

\*The above specifications may change lot by lot.

\*AWG-11-19 is used as a standard. Please contact us if you use other than AWG-11-19.

#### Silicon tubing chart

| Size length: 10m (394") |             |             |              |  |  |
|-------------------------|-------------|-------------|--------------|--|--|
|                         | IDmm        | ODmm        | Thickness mm |  |  |
| silicon<br>3×5 mm       | 3.0 (0.12") | 5.0 (0.20") | 1.0 (0.04")  |  |  |
| silicon<br>2×4 mm       | 2.0 (0.08") | 4.0 (0.16") | 1.0 (0.04")  |  |  |
| silicon<br>1×3 mm       | 1.0 (0.04") | 3.0 (0.12") | 1.0 (0.04")  |  |  |

#### **Tubing specification**

| PTFE    | suited for cyanoacrylate or anaerobic adhesive      |
|---------|-----------------------------------------------------|
| Silicon | more fluid flow can be obtained than<br>Teflon tube |

#### Specifications

| Power supply                             | VDC24V (VAC100-240 adapter included)                                                                                                                    |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power consumption                        | Approximately 15W                                                                                                                                       |  |
| Rotating speed (maximum)                 | 0.5~240 RPM is adjustable with dial Note1                                                                                                               |  |
| Mode setting                             | continuous operation/timer/counter Note2                                                                                                                |  |
| Dispensing timer                         | 0.01sec ~ 999hour (switching : sec. minute. hour)                                                                                                       |  |
| Counter setting                          | 1~99999                                                                                                                                                 |  |
| Vacuum timer                             | Adjustable: 0.001~9999sec                                                                                                                               |  |
| Interval timer                           | Adjustable: 0.001~9999sec                                                                                                                               |  |
| Applicable viscosity*1                   | PTFE tube 1 $\sim$ 2,000m cps Silicon tube 1 $\sim$ 5,000m cps                                                                                          |  |
| Outer dimension ( )including protrusions | W109×D167(174)×H138(139)mm                                                                                                                              |  |
| Interface                                | RS-232C (D-Sub 9 pin male) Note3                                                                                                                        |  |
| Weight                                   | Approximately 2.2kg                                                                                                                                     |  |
| Option                                   | Pen type dispenser with finger switch(SRD-P-0019)  for AWG-19 (standard)  Foot switch (SRD-FS)  PTFE tubes (10M per each)  Silicon tubes (10M per each) |  |

<sup>\*1:</sup> Applicable viscosity is noted just for reference. Please note that figures may not be used depending on the property or the conditions of the fluid. \*2: AWG-11-19 are generally used for the tube unless there are particular instructions. \*3: Please use the tubes that are originally instructed from us.

Note1: Either RPM or PPS is selectable for speed setting. Note2: Counter mode is controlled by the number of passing of rotating disc slit (10/1 rotation) attached to motor shaft. Note3: Straight type

#### Constant Tank Pressure ensures controlled feeding for adhesives, oils, greases, solvents, etc.



#### Top-port type (standard)

Standard tanks are made of stainless-steel and are designed to handle up to a 5 liter bottle or a fluid cartridge. Bottles or cartridges are placed directly inside the tanks and pressurized with a controlled and constant pressure to feed the fluid out of the top fluid port. The bottles or cartridges can be easily replaced and the time for cleaning can be drastically reduced as the dispensed fluids never wet the inside of the tank.



#### Bottom-port type

This type of tank is also made of stainless-steel and can hold up to a 10 liter bottle. The tank is pressurized so that fluids can be fed out of the bottom port. Highly polished inner and outer surfaces of the tank minimize the build-up of residue, which results in clean dispensing stations.

#### Tonk appoification

| Tank Specification  |             |        |        |  |
|---------------------|-------------|--------|--------|--|
|                     | Part number | Volume | Weight |  |
|                     | SFTF-191027 | 2L     | 4.0kg  |  |
| Standard type       | SFTF-191225 | 3L     | 5.5kg  |  |
| Standard type       | SFTF-191525 | 5L     | 7.0kg  |  |
|                     | SFTF-192035 | 10L    | 17.0kg |  |
| 5                   | SFTR-191221 | 3L     | 5.0kg  |  |
| Bottom-port<br>type | SFTR-191525 | 5L     | 6.5kg  |  |
| 1,70                | SFTR-192028 | 10L    | 11.0kg |  |

#### \*Optional parts

| Regulator          | 0.7MPa maximum, 0.2MPa maximum                                   |
|--------------------|------------------------------------------------------------------|
| Relief valve       | brass or stainless-steel                                         |
| Fluid feeding pipe | pierced fitting for fluid feeding or<br>suction pipe made of SUS |
| O-ring             | NBR VITON, EPDM, Teflon                                          |

<sup>\*</sup>Other configurations can be customized.

Level gauge, level sensor, stirring system, inner-polishing, etc, can be added. Specialized larger or smaller tanks, and tanks for syringe filling can be

SRD250

# High precision with even, uniform lubricant coatings that remarkably improve productivity



LUBEMATE system applies lubricant coatings as fine, even films of fluid without overspraying, splashing or misting ensuring complete coverage especially for cutting tool operations with a matal stamping machine.

- · A very small profile spray valve, LM87 easily retrofits to existing machines
- · Increases accuracy especially for very small volumes of oil coating
- · One controller can adjust up to 8 valves
- LM87-WF mounted on feedstock can be applied up to a maximum width of 165mm
- · Drastically reduces both production costs and lubricant consumption
- · Prolongs the sharpening period of die

#### Applications (high speed stamping)

- · Lead frames
- · Connector pins
- · Motor cores
- · Can end pull tabs
- $\cdot \ \mathsf{Battery} \ \mathsf{components}$
- · Heat exchangers: forming of cooling fins
- · Automobile parts
- · Timepiece components
- · Mobile device components



LUBEMATE applies a variety of fluid coating

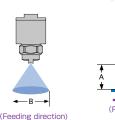
#### Product specification Spray LM87 series

| Size (mm)      | 65.8(H)×46.2(W) |  |
|----------------|-----------------|--|
| Weight         | 263g            |  |
| Fluid body     | SUS303          |  |
| Needle, Nozzle | SUS303          |  |
| Air cap        | SUS303          |  |
| Diaphragm      | PTFE、FKM        |  |
| Fluid inlet    | 1/8NPT female   |  |
| Mounting hole  | M6 Tap hole     |  |

#### Controller LMC380

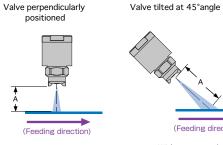
| Size (mm)          | 143(W)×220(D)×269(H)      |  |
|--------------------|---------------------------|--|
| Weight             | 5.9kg(8 valves specified) |  |
| Input air pressure | 0.4~0.6MPa                |  |
| Tank pressure      | 0.12~0.3MPa               |  |
| Nozzle air         | 0~0.2MPa                  |  |

#### LUBEMATE System Controller LMC380


LUBEMATE System Controller LMC380 widely controls the volume of coating fluids from minute to large. The dispensed volume can be adjusted even while the system is running, which is especially advantageous for an intermittent dispensing process.

One controller is capable of driving up to eight valves.

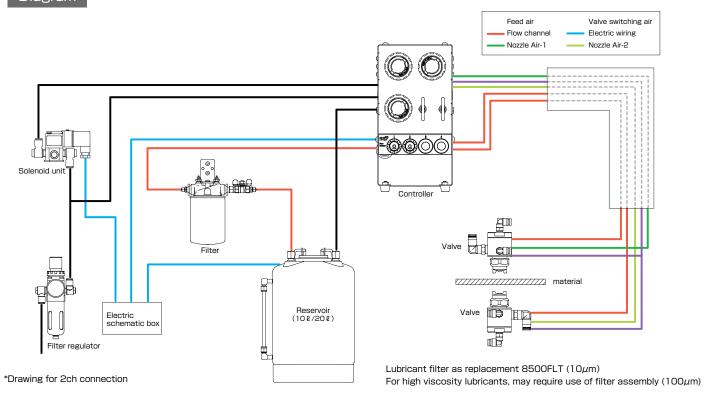



#### Spray Coverage Area

| Spray valves      | LM87                       | LM87-WF<br>(Wide-fan type) |
|-------------------|----------------------------|----------------------------|
| A Nozzle distance | B Spray diameter (typical) |                            |
| 25                | 25                         | 40                         |
| 50                | 40                         | 65                         |
| 75                | 50                         | 80                         |
| 150               | 80                         | 165                        |
|                   |                            | unit: mm                   |



Nozzle direction


(front)



Wider area can be sprayed when the valve is tilted

47

#### Diagram

